
Touchstone Documentation
Release 6.2.1

AEGIS.net, Inc.

Jan 19, 2024

CONTENTS

1 Introduction 1

2 Registration and Login 3
2.1 Register . 3
2.2 Membership . 5

2.2.1 New Organization . 5
2.2.2 Become a member . 6
2.2.3 Approving Membership . 7

2.3 Subscribe . 8
2.4 Login . 10
2.5 Email Addresses . 11
2.6 FAQ . 14

3 Test Systems 19
3.1 Create Test System . 19
3.2 Capability Statement . 27
3.3 Test System List . 27
3.4 FAQ . 29

4 Executing Tests 31
4.1 Creating Test Setup . 31

4.1.1 Repeated Variables . 34
4.2 Dynamic Fixtures . 35

4.2.1 Test Setup . 36
4.2.2 Conformance Testing . 39

4.3 Test Executions . 39
4.4 OAuth2 Test Executions . 41

4.4.1 Static Token . 41
4.4.2 Dynamic Token . 42

4.4.2.1 Authorization Code . 42
4.4.2.2 Client Credentials . 45
4.4.2.3 JWT Assertion . 46

4.5 Test Execution Results . 47
4.6 FAQ . 49

5 Multi-Profile Testing 51
5.1 Validator Testing . 51

5.1.1 Uploading . 52
5.2 Updating Validators . 54
5.3 Viewing Validators . 56

i

5.3.1 To inspect the contents of a Validation Package . 57

6 Org Groups 59
6.1 Creating Org Group . 59
6.2 Joining Org Group . 60
6.3 Leaving Org Group . 61
6.4 Access . 62

6.4.1 Test System access . 62
6.4.2 Test Definition access . 63
6.4.3 Test Results access . 66

7 Conformance Testing 69
7.1 Conformance Suites . 69

7.1.1 Listing . 70
7.1.2 Launching Executions . 72

7.2 Current . 72
7.2.1 Single Test Group . 72
7.2.2 Multi Test Group . 83

7.3 Results Summary . 90
7.4 Publishing Results . 101
7.5 FAQ . 108

8 Client/Peer-to-Peer Testing 113
8.1 Launching Executions . 113
8.2 Execution Matching . 120
8.3 Exchanges Screen . 124

8.3.1 Common Errors . 125
8.4 FAQ . 128

9 TestScript Authoring 131
9.1 FHIR TestScript . 131
9.2 Upload on UI . 132
9.3 TestScript Editor . 137

9.3.1 Download . 137
9.3.2 Install a JVM . 138
9.3.3 Start TestScript Editor . 140
9.3.4 Create TestScript Project . 141
9.3.5 Create a Test Group . 144
9.3.6 Create a TestScript . 146
9.3.7 Code Completion . 151
9.3.8 Touchstone Integration . 152

9.3.8.1 Upload to Touchstone . 152
9.3.9 Simplifier Integration . 162

9.3.9.1 Simplifier Preferences . 162
9.3.9.2 Create New Project . 163
9.3.9.3 Download from Simplifier . 166
9.3.9.4 Upload to Simplifier . 167

9.3.10 Updating TestScript Editor . 169
9.3.11 References . 175

9.4 Best Practices . 175
9.4.1 Version Control . 175
9.4.2 Location . 175
9.4.3 Paths to resources . 176

9.5 Exclusions . 176
9.5.1 Props Location . 177

ii

9.5.2 Props format . 177
9.5.3 Upload Exclusions . 178
9.5.4 Parsing Exclusions . 184
9.5.5 Validation Exclusions . 189
9.5.6 Conformance Exclusions . 190

9.6 Test Groups . 191
9.6.1 Access . 191
9.6.2 Deactivate . 194
9.6.3 Deletion . 197

9.7 Placeholders . 198
9.7.1 Predefined User Unique Data Values . 198
9.7.2 Functions for Dynamic Data Generation . 198

9.7.2.1 CURRENTDATE[TIME] . 199
9.7.2.2 DATE[TIME] . 199
9.7.2.3 UUID[-ST|-NODASH|-ST-NODASH] . 200

9.7.3 Usage . 200
9.8 Rule Authoring . 201

9.8.1 Rule Basics . 201
9.8.1.1 Definition . 201
9.8.1.2 Declaration . 205
9.8.1.3 Assertion . 205
9.8.1.4 Summary and Description . 206
9.8.1.5 Bindings . 211

9.8.2 Parameters . 213
9.8.2.1 Definition . 213
9.8.2.2 Supplying params . 214
9.8.2.3 Operator parameter . 216
9.8.2.4 Expected parameter . 218

9.8.3 Ruleset . 219
9.8.3.1 Definition . 220
9.8.3.2 Declaration . 223
9.8.3.3 Assertion . 226
9.8.3.4 Overriding rules . 226

9.8.4 Rules API . 227
9.8.4.1 Body . 227
9.8.4.2 Capability / Support . 229
9.8.4.3 Content-Type . 233
9.8.4.4 Header . 235
9.8.4.5 Minimum . 241
9.8.4.6 Path . 241

9.8.4.6.1 FHIRPath . 242
9.8.4.6.2 JSONPath . 249
9.8.4.6.3 NonFHIRPath . 257
9.8.4.6.4 XPath . 265

9.8.4.7 Profile . 271
9.8.4.8 Request Method . 274
9.8.4.9 Request URL . 276

9.8.4.9.1 Request URL Prefixes . 279
9.8.4.10 Resource . 281
9.8.4.11 Response Code . 283

9.8.5 Short-circuiting . 286
9.8.5.1 Failing . 286
9.8.5.2 Warning . 286
9.8.5.3 Skipping . 287

iii

9.8.6 Multiple Assertions . 289
9.8.6.1 Short-circuiting when a request or response assertion fails 289
9.8.6.2 Continuing rule-execution when a request or response assertion fails 290

9.8.7 Rule Outputs . 291
9.8.7.1 Assertions on one Rule Output . 293
9.8.7.2 Assertions on multiple Rule Outputs . 294
9.8.7.3 Rule Output when outputting a Fixture . 294

9.8.8 XSLT and Schematron . 296
9.8.8.1 Declarations . 296
9.8.8.2 Header assertions . 296

9.8.8.2.1 Groovy . 296
9.8.8.2.2 XSLT . 297
9.8.8.2.3 Schematron . 298

9.8.8.3 Payload assertions . 299
9.8.8.3.1 Groovy . 299
9.8.8.3.2 XSLT . 299
9.8.8.3.3 Schematron . 300

9.9 OAuth2 Capabilities . 301
9.9.1 Fixture ID’s . 301
9.9.2 Base64Encoding . 302
9.9.3 PKCE Functionality . 302

9.10 Bulk Data Capabilities . 304
9.10.1 NDJSON File Evalutation and Validation . 304
9.10.2 NDJSON Assertion Prefix . 304

9.11 TestScript Extensions . 305
9.12 FAQ . 305

10 Conformance Suite Authoring 309
10.1 Server Suites . 309
10.2 Client Suites . 317
10.3 Categorization . 325

10.3.1 Overview . 325
10.3.2 Definition . 335

10.3.2.1 Root Node . 335
10.3.2.2 Leaf Nodes . 336
10.3.2.3 Parent Nodes . 339
10.3.2.4 Node Deletion . 340
10.3.2.5 Paths . 343

10.3.2.5.1 FHIR . 343
10.3.2.5.2 CDS Hooks . 346

10.4 Resource Ownership . 346
10.5 Versioning . 347

10.5.1 Version Increments . 347
10.5.2 No Version Increments . 349

10.6 Best Practices . 350
10.6.1 Suite Versioning . 350
10.6.2 Anchor Systems . 351
10.6.3 Publishing . 351
10.6.4 Deletion . 351

10.7 FAQ . 353

11 Continuous Integration 355
11.1 API . 355

11.1.1 Authentication . 356

iv

11.1.2 Launching Executions . 357
11.1.3 Retrieve Execution status . 357
11.1.4 Retrieve Execution Detail . 358
11.1.5 Retrieve Script Exec Detail . 358
11.1.6 Pseudo code . 359
11.1.7 Retrieve FHIR Test Report . 360
11.1.8 OAuth2 Static Token . 361
11.1.9 OAuth2 Grant Flow . 362

11.2 Jenkins Integration Example . 364
11.2.1 Groovy Script Definition . 364

11.2.1.1 Authentication . 365
11.2.1.2 Execute Test . 365
11.2.1.3 Wait for Test Execution Completion . 366

11.2.2 Jenkins Job Configuration . 368
11.2.2.1 Post Steps Initial Configuration . 368
11.2.2.2 Execute system Groovy script . 368
11.2.2.3 Groovy script file . 369
11.2.2.4 Advanced - Expand Classpath . 369
11.2.2.5 Advanced - Enter Classpath . 369

12 Downloads 373

13 Release Notes 375
13.1 Touchstone . 375
13.2 TestScript Editor . 405

v

vi

CHAPTER

ONE

INTRODUCTION

The Touchstone Project is an Infrastructure as a Service (IaaS) and Testing as a Service (TaaS) Open Access Solution
for health information exchange. Touchstone offers over 1500 tests in an easy-to-use system for determining a test
system’s conformance and interoperability against published specifications, standards, and profiles, including templates
and implementation guides.

The Touchstone Project. . .

• allows for automated, internet-based interoperability testing against the HL7 FHIR specifications and standards.

• tests interoperability with other FHIR Server and FHIR Client implementations.

• has been engineered from the ground up to leverage the new FHIR TestScript resource.

• is a blend between Test-Driven-Development (TDD) methodologies and Natural Language Processing (NLP)
test scripts.

• has been featured at HL7 FHIR Connectathons and is being leveraged in a continuous testing environment by
numerous leading HL7 FHIR implementers.

• plays an active role in the HL7 Conformance Testing community, the HL7 Argonaut Project, and the HSPC
Implementation community.

Features include. . .

• self-registration of user accounts and organizations.

• ability for users to execute FHIR test scripts against test systems with Touchstone serving as the initiator of
message exchanges.

• ability for users to initiate message exchanges from their test systems against other peer test systems with Touch-
stone serving as the intermediary.

• ability to drill down to individual operations and assertions in test execution results.

• ability to save configured sets of test scripts as named “test setups” for re-execution.

• controlled access to test scripts, test systems, and test results at the user, organization, and organization group
levels.

1

Touchstone Documentation, Release 6.2.1

2 Chapter 1. Introduction

CHAPTER

TWO

REGISTRATION AND LOGIN

2.1 Register

Touchstone Registration - Video Walkthrough

You can register into the system by taking the following steps:

1. Click the Register link:

2. Fill in the fields and hit the Register button.

Note: Password must be at least 8 characters long and must contain number, upper case letter, and special
character (@#$%^&+=).

3

https://www.youtube.com/watch?v=zwRjZiNZP-0&feature=youtu.be

Touchstone Documentation, Release 6.2.1

Warning: Please avoid using a fictitious email address as important sign-in information will be emailed to
you at this address. You will need that information in the future to reset your password. Look in your Spam
folder if you are unable to find emails sent from Touchstone_Support@aegis.net.

4 Chapter 2. Registration and Login

mailto:Touchstone_Support@aegis.net

Touchstone Documentation, Release 6.2.1

2.2 Membership

To execute tests in Touchstone, you must either create an organization or become a member of an existing organization.

If your organization does not yet exist in Touchstone, please feel free to create one.

2.2.1 New Organization

If you are the first user from your organization to register into Touchstone, you can take the following steps:

1. Click on the New Organization link in the top menu:

2. Select Create a new organization if it’s not already selected. Fill in the fields and hit Register:

Note: Website is the organization’s website and not the Base URL of a test system.

3. Congratulations! You should see the screen below. You are now able to execute tests in Touchstone. You are the
sole representative of this organization. Other users can request to become a member of your organization. You
will be notified of such requests. You can approve or reject their requests under the Users section.

2.2. Membership 5

Touchstone Documentation, Release 6.2.1

2.2.2 Become a member

If your organization already exists in the system, after going through the initial registration, you can take the following
steps:

1. Click on the Become a member link in the top menu:

2. Click the Become a member of an existing organization option. Select the organization that you wish
to become a member of and hit Submit:

After your request has been submitted, you will need to wait for approval before you can execute tests in the
system. You will be notified of approval (or rejection) via email. Check your Spam folder in your email system
in case the emails get directed there.

If you get the warning below, then the Org Rep of the organization has to upgrade the subscription before being
able to approve your subscription.

6 Chapter 2. Registration and Login

Touchstone Documentation, Release 6.2.1

2.2.3 Approving Membership

If you are one of the organization reps of your organization, you will be notified (by email) of membership requests.
Below are the steps you can take to approve or reject the user’s request to become a member of your organization:

1. Click on Users in the top menu and filter by your organization:

2. Notice that there are two users with Pending registrations. These users are waiting for your approval before they
can execute tests.

3. To change Peter’s registration status, you can click either on the link Peter Gibbons or Pending as indicated
above.

4. On the Edit Privileges screen, click on Approve Membership Request if you’d like to approve the user’s
registration or Reject Membership Request if you’d like to reject it.

Warning: You do NOT need to give all your users the Org Rep role. Testers can create test systems and
execute tests the same way as Org Reps.

Org Reps can perform the following functions that Testers cannot:

2.2. Membership 7

Touchstone Documentation, Release 6.2.1

• Org Reps can approve and reject membership requests.

• They can publish test results that belong to the organization.

• They can submit requests on behalf of the organization for membership into Org Groups.

• They can view the roles and user history of other users within the organization.

• They can be contacted by site administrator for issues that pertain to the organization and its test systems.

2.3 Subscribe

You can subscribe to to Starter level via PayPal:

1. Click either the Subscription link on the home page or the Subscribe link on the banner:

8 Chapter 2. Registration and Login

Touchstone Documentation, Release 6.2.1

2. Click the PayPal button under the Starter header:

3. Fill in the fields and click the PayPal Subscribe button.

4. Follow the standard PayPal payment procedure and you will be redirected back to Touchstone. Once this happens
your Org will be automatically upgraded to a starter level subscription.

Warning: The automatic upgrade may, in rare cases, not happen immediately. If you aren’t upgraded
immediately on redirect, you will be upgraded when Touchstone receives the notification from PayPal that
the payment has been verified.

2.3. Subscribe 9

Touchstone Documentation, Release 6.2.1

2.4 Login

As part of registration process the “Name” supplied will be converted to all lowercase, spaces removed, special char-
acters removed and that will be stored as a Login ID. You can log into your Touchstone Account using your Primary
Email OR generated Login ID.

Steps to view Login ID in Touchstone:

1. Sign into your Touchstone account using your Primary Email.

2. After signing in, hover over your user name in the upper right corner of Touchstone. Select “My Settings” from
the list.

On the “My Settings” screen you will find your Primary Email and Login ID, both valid as Touchstone login values.

10 Chapter 2. Registration and Login

Touchstone Documentation, Release 6.2.1

2.5 Email Addresses

As part of the registration process, the “Email” supplied was set to your Primary Email address. This email address
can be used to login, and will also receive any automated emails that Touchstone sends out to you, the user. You do
have the optional choice of having an Alternate Email address. If you choose to have an Alternate Email, it will also
receive any automated emails from Touchstone that are sent to your Primary Email.

Steps to add an Alternate Email address to your profile:

1. Sign into your Touchstone account using your Primary Email.

2.5. Email Addresses 11

Touchstone Documentation, Release 6.2.1

2. After signing in, hover over your user name in the upper right corner of Touchstone. Select “My Settings” from
the list.

3. On the “My Settings” screen you will find your Primary Email (required) and your Alternate Email (optional),
both of which you can update if you choose to do so.

12 Chapter 2. Registration and Login

Touchstone Documentation, Release 6.2.1

Warning: Your Primary Email and Alternate Email cannot be the same, and niether can be the same as any
other Primary or Alternate Email used by other users in Touchstone.

2.5. Email Addresses 13

Touchstone Documentation, Release 6.2.1

2.6 FAQ

1. How can I change my password?

• If you do not remember your old password, you will need to go to Reset Password page:

When you registered into Touchstone, you should have received a Reset Key in your email.
Please check your Spam folder if you can’t find this email. Once you’ve found your Reset Key,
click on the Reset Password link:

Enter your Reset Key value and your email address on the next screen and you should get a
new email with your new password and your new Reset Key value. Do not use the Reset Key
as your password when you sign in later. Use the temporary password that was generated and
sent in the email. The Reset Key (new one in the latest email) will be needed the next time
you need to reset your password.

14 Chapter 2. Registration and Login

Touchstone Documentation, Release 6.2.1

If you’re unable to find your Reset Key or cannot reset your password, please contact Touch-
stone_Support@aegis.net

• If you remember your old password, you can go to Change Password page:

Enter your Old Passowrd on the next screen along with your new password and click on Save
Changes:

2.6. FAQ 15

mailto:Touchstone_Support@aegis.net
mailto:Touchstone_Support@aegis.net

Touchstone Documentation, Release 6.2.1

2. I requested membership into an organization but am not getting approved? It is likely that the organization does
not have the right subscription level to approve your registration.

If you got the warning below during registration, then the Org Rep of the organization has to upgrade the sub-
scription before being able to approve your subscription,

Please contact Touchstone_Support@aegis.net if you need help with registration.

3. Can I login with something other than the email I registered my account with? You can either login with your
account’s email address, or a LoginID that was created when you first registered.

You can find the LoginID that was created when you registered your account by going to the ‘My Settings’ page.

4. How do I change the name of my Org? Watch this quick walthrough of the Org rename process.

5. How do I cancel my Starter-level Touchstone subscription and stop the automatic PayPal charge? To unsubscribe
from your Touchstone subscription when payment is made through PayPal, log in to your PayPal account by
clicking on the button on the upper right corner of the www.paypal.com page.

16 Chapter 2. Registration and Login

mailto:Touchstone_Support@aegis.net
https://youtu.be/TOneEYF9MKw

Touchstone Documentation, Release 6.2.1

Click Profile (the gear icon) on the top right corner of the page.

Click Pre-approved payments under “Payment settings”. Select the merchant whose agreement you want to
cancel, and click Cancel. Follow the instructions to cancel the agreement.

Touchstone will be notified of the PayPal cancellation and will move their org back to Open/Free 30 days after
their last monthly payment is received.

2.6. FAQ 17

Touchstone Documentation, Release 6.2.1

18 Chapter 2. Registration and Login

CHAPTER

THREE

TEST SYSTEMS

3.1 Create Test System

1. Sign in (as Tester or Org Rep) and click on the New Test System link in the top menu:

2. To select whether your Test System is an HL7-FHIR, CDS Hooks, HL7-V2, HL7-V3 test system, select the
correct option under Spec Domain. To enable selection of your test system as the Destination (or ‘target’) of
message exchanges in Test Setup, select the Server option for Profiles Supported:

19

Touchstone Documentation, Release 6.2.1

3. If you select either HL7-V2 or HL7-V3 as your Spec Domain, then you will have a new option appear for Message
Protocols:

Note: You do not need to include your organization name in the test system name. Touchstone prefixes the test system
name with your organization name where necessary.

• Name – This will be displayed along with your Organization name in Test System select-boxes in Touchstone.

20 Chapter 3. Test Systems

Touchstone Documentation, Release 6.2.1

• Base URL – Must be reachable on the public internet. Refer to Service Base URL for details. Base URL is
limited to 512 characters. For a HL7V2-Server, the Base URL should be in the form of hostname:port.

• IP Addresses – This will be populated automatically by Touchstone. You can add additional IP addresses for the
test system if the auto-detected one is incorrect. Note that the IP address is used primarily for Client test systems.
As such it can be ignored if your system only responds to request and does not initiate message exchanges to
other test systems.

• Can be viewed by – If Me or My Organization is selected, then test system will not be listed on the Test Systems
screen for users outside your organization. If Me is selected, then even other users within your organization will
be unable to see the test system.

• Can be executed against by – If Me or My Organization is selected, then users outside your organization cannot
execute tests against the test system. If Me is selected, then even other users within your organization will be
unable to execute tests against the test system.

• Can be modified by – If Me or My Organization is selected, then users outside your organization cannot modify
this test system’s attributes in Touchstone. If Me is selected, then even other users within your organization will
be unable to modify attributes of this test system.

• Allow Touchstone to pull capability statement once a day – Touchstone conditionally evaluates assertions during
test execution based on test system capabilities as defined by its Capability Statement. To ensure that Touchstone
has the latest copy of your Capability Statement, allow Touchstone to download this statement from your server
once a day (by checking this box) and ensure that your test system has the statement available.

• Can Be Anchor – Whether or not this test system can serve as an Anchor System in conformance suites. Confor-
mance results are NOT collected on Anchor Systems. You can learn more about Anchor Systems here.

• Requires / OAuth2 – Leave this unchecked if your system is a client test system only or if it does not require
OAuth2. Otherwise, choose whether this system uses a static token or a dynamic token. If Static Token is
chosen, Authorization request header will be set to this value by Touchstone when your test system is the
target of an interaction.

• Spec Domain – Choose which type of test system you are creating, one that utilizes HL7-FHIR, or one that utilizes
CDS Hooks.

• Profiles Supported – If your test system only responds to requests and does not initiate message exchanges to
other test systems, then select the Server option.

• Message Protocols – For HL7-V2 and HL7-V3 test systems, you have the option to designate what type of message
protocols the test system is designed to use. For HL7-V2, HTTP/HTTPS and MLLP V1 are available, and for
HL7-V3, HTTP/HTTPS and SOAP are available. HL7-FHIR and CDS Hooks do not have these options becuase
they are HTTP/HTTPS only.

Note: While the options are there for SOAP and HTTP/HTTPS in the Message Protocols, at this time Touchstone does
not support HL7-V2 HTTP/HTTPS and HL7-V3 SOAP, but will in the future.

4. To enable OAuth, check the OAuth2 checkbox and choose whether this system uses a static token or a dynamic
token:

3.1. Create Test System 21

http://build.fhir.org/http.html#general
http://build.fhir.org/capabilitystatement.html

Touchstone Documentation, Release 6.2.1

Note: Touchstone is currently not designed to use OAuth2 with Test Systems that support HL7-V2 and HL7-V3.

5. If the Static Token button is checked, a default value for the static token is required, but the value can be overridden
at Test Setup if needed.

22 Chapter 3. Test Systems

Touchstone Documentation, Release 6.2.1

6. If the Dynamic Token button is checked, the following is shown to the user:

• Authorization Endpoint – The authorization endpoint URL of the FHIR Server.

3.1. Create Test System 23

Touchstone Documentation, Release 6.2.1

• Token Endpoint – The token endpoint URL of the FHIR Server.

• Registration Endpoint – The registration endpoint URL of the FHIR Server.

• Introspection Endpoint – The introspection endpoint URL of the FHIR Server.

• Revocation Endpoint – The revocation endpoint URL of the FHIR Server.

• OAuth2 Grant Type – The grant type used for the server, Authorization Code, Client Credentials, or JWT
Assertion. Choosing one of these is required.

• Client ID / Client Secret – For Authorization Code, Client Credentials, and JWT Assertion grant type, Client
ID is requried.

• OAuth2 Scopes Supported – Optional input of the OAuth2 scopes that are supported.

• SMART on FHIR – Whether or not the Test System supports SMART on FHIR. If this box is checked, then the
URL endpoints will be overwritten if a FHIR CapabilityStatement is retrieved from the server.

• Enable PKCE flow – This checkbox allows Touchstone to recognize the need for code_challenge and code_verifier
parameters and use them in automatic authorization requests per PKCE (Proof Key for Code Exchange) specifi-
cation

7. If Authorization Code is selected, the following is shown to the user:

• ‘nonce’ Parameter – The ‘nonce’ parameter is sent in the Authorization Request with a randomly generated 12
character value.

• ‘response_mode’ Parameter – The ‘response_mode’ parameter is sent in the Authorization Request with a value
of “query”.

8. If JWT Assertion is selected, the following is shown to the user:

24 Chapter 3. Test Systems

Touchstone Documentation, Release 6.2.1

• JWT Signing Algorithm – Algorithm used to sign or encrypt the JSON Web Token. Required for JWT Assertion.

– Note: The Touchstone public-key can be found using the link next to the JWT Signing Algorithm. Be
sure to select the correct algorithm before navagating this link.

9. To enable selection of your test system as the Origin (or ‘source’) of message exchanges in Test Setup, select the
Client option for Profiles Supported:

3.1. Create Test System 25

Touchstone Documentation, Release 6.2.1

• Match Peer-to-Peer client request to test execution using – This is the mechanism by which Touchstone will
match peer-to-peer request messages to test executions. Peer-to-peer message exchanges are covered under Peer-
to-Peering testing.

• Verify origin IP of request – If checked, Touchstone will verify that the origin IP address of the request in peer-
to-peer exchanges matches the client test system’s IP address in Test Setup. Without this verification, other client
test systems could pretend to be this test system.

• IP Addresses – This becomes critical if you have selected Origin IP of request for Match Peer-to-Peer.
It’s also critical if you have checked Verify origin IP of request.

• Requires / OAuth2 – Leave this unchecked if your system is a client test system only.

• Allow Touchstone to pull capability statement once a day – It is still recommended to have this checked even if
the test system is a client system only. Capability statement is applicable to client test systems as well. See Rest

26 Chapter 3. Test Systems

/touchstone/userguide/html/client-testing/index.html
/touchstone/userguide/html/client-testing/index.html
http://build.fhir.org/capabilitystatement-definitions.html#CapabilityStatement.rest.mode
http://build.fhir.org/capabilitystatement-definitions.html#CapabilityStatement.rest.mode

Touchstone Documentation, Release 6.2.1

Mode.

10. On the Edit Test System page, you can download the Capability Statement that is on your test server if you have
one, or you can manually upload one to Touchstone:

3.2 Capability Statement

Test Systems can declare what interactions, operations, and resources they support in the Capability Statement. These
declarations are used:

• to inform the end-user of the interactions that are unsupported by the test system during test execution.

• to conditionally evaluate test result assertions during test execution.

• to measure conformance of test systems against the specification. These measurements feed the Conformance
Results.

• in Test Result Publishing.

Touchstone uses the Base URL of your test system to download the Capability Statement. If the Base URL is https:/
/testsystem1.initech34.com/fhir, then Touchstone will make a GET request to: https://testsystem1.
initech34.com/fhir/metadata using the appropriate Accept header. Refer to the capabilities section for more
details. A Capability Statement can also be uploaded to Touchstone when editing a Test System.

Note: Test Systems that are HL7-V2 or HL7-V3 do not use a Capability Statement, so those Test Systems will not have
the option to download or upload the Capability Statement.

3.3 Test System List

You can get a list of all test systems by clicking on the Test Systems List link in the top menu:

To view only the test systems that belong to your organization, you can check the My Org Test Systems Only option:

3.2. Capability Statement 27

http://build.fhir.org/capabilitystatement-definitions.html#CapabilityStatement.rest.mode
http://build.fhir.org/capabilitystatement-definitions.html#CapabilityStatement.rest.mode
http://build.fhir.org/capabilitystatement.html
http://build.fhir.org/capabilitystatement.html
http://build.fhir.org/http.html#capabilities
http://build.fhir.org/capabilitystatement.html
http://build.fhir.org/capabilitystatement.html
http://build.fhir.org/capabilitystatement.html

Touchstone Documentation, Release 6.2.1

Red question marks appear for test systems that do not yet have a Capability Statement downloaded or uploaded into
Touchstone:

You can get rid of that by downloading the Capability Statement here:

Or you can upload the Capability Statement on the Edit Test System screen here:

If your test system host is not publicly accessible, then you will see the following error:

If your test system’s /metadata endpoint is not working, then you will see the following error:

28 Chapter 3. Test Systems

http://build.fhir.org/capabilitystatement.html
http://build.fhir.org/capabilitystatement.html

Touchstone Documentation, Release 6.2.1

Warning: Getting past these errors is critical for future testing in Touchstone. You can use any REST
client to ensure proper retrieval of your Capability Statement. Make sure you’re able to do so even
when you’re not connected to your company’s network.

For an example of how to define a FHIR capability statement, you can refer to http://build.fhir.org/
capabilitystatement-example.json.html.

Red [C] marks appear for test systems whose Capability Statement is invalid. You can click on the [C] to view the list
of validation errors.

Warning: It is important to get past all validation errors reported by FHIR Validator. Validations are
triggered automatically by Touchstone when a Capability Statement is downloaded or uploaded into
Touchstone.

3.4 FAQ

1. When registering Touchstone as a client for an Oauth Test System I need to register the redirect_uri, where
can I find that? The redirect_uri for Touchstone is a static value: “https://touchstone.aegis.net/
touchstone/oauth2/authcode/redirect”

2. Why were the endpoints of my Test System updated unexpectedly? When the Capability Statement is down-
loaded/pulled from the Test System configuration page, Touchstone will automatically pull the well-known/smart-
configuration. If the values in your smart-config are incorrect you may edit them on the test system configuration
and save.

3. What is the list of Touchstone IP addresses that would need to be added to a whitelist if my Test System is behind
a firewall? The following IP ranges should be added to a whitelist to grant Touchstone access to a Test System
that is behind a firewall:

1) Site 1 (Primary) - 192.196.182.192/26 (which covers our entire IP range - 192.196.182.192-255)

2) Site 2 (Secondary) - 4.59.159.64/26 (which covers our entire IP range - 4.59.159.64-127)

3.4. FAQ 29

http://build.fhir.org/capabilitystatement-example.json.html
http://build.fhir.org/capabilitystatement-example.json.html
https://www.hl7.org/fhir/validation.html#jar

Touchstone Documentation, Release 6.2.1

30 Chapter 3. Test Systems

CHAPTER

FOUR

EXECUTING TESTS

For both Touchstone-initiated testing and Client-side (Peer-to-Peer) testing, you need to create a Test Setup first. Both
Org Rep and Tester users can create test systems, test setups, and execute tests.

4.1 Creating Test Setup

1. Under Test Definitions in the left menu, select the set of test scripts you’re interested in and click on the Create
Test Setup button:

Note that the “All” checkbox (high-lighted in red above) was selected in this case. If you do this, Touchstone will
remember this setting and will automatically pull test scripts that get added by the author to /FHIR3-3-0-Basic/
P-R/Patient test group when you re-execute this Test Setup. Touchstone will also automatically remove any
test scripts from this test setup that were removed from the test group by the author.

31

Touchstone Documentation, Release 6.2.1

If you’d like to avoid Touchstone synchronizing the test setup with the test group, you can instead select individual
test scripts separately when creating a particular test setup:

Note that in either case, the latest version of the test scripts will be pulled automatically by Touchstone when you
re-execute a Test Setup (or a Test Execution). You do not need to go through Test Setup configuration again and
again to get the latest test scripts (content).

2. After clicking on the Create Test Setup button, you’ll land on the Test Setup screen where you can con-
figure the Test System you’d like to execute tests against:

32 Chapter 4. Executing Tests

Touchstone Documentation, Release 6.2.1

If you click on Execute, the system will both save your configuration settings and start the test execution.

If you click on Save, the system will only save your configuration settings.

You can override the system-generated name for your test setup in the Name input-box above.

If your TestScripts have Validator options set you can choose to use one of those instead of the default in the
Validator drop-down above. For more information on how to Validators are set and maintained, refer to Val-
idators.

You can access all your test setups by clicking on Test Setups / List on the left menu:

4.1. Creating Test Setup 33

/touchstone/userguide/html/multi-profile/updating-validators.html
/touchstone/userguide/html/multi-profile/updating-validators.html

Touchstone Documentation, Release 6.2.1

4.1.1 Repeated Variables

Often, when creating a Test Setup, there are several tests using identically named variables. Touchstone allows the
user to input these variables once for all occurrences by populating the “Repeated Variable” field. Once the “Repeated
Variable” field is filled, hit the “Populate” button. Doing so will place the desired variable value into each occurrence
of that variable in the Test Setup. If you would like to clear all values for a particular variable, simply leave that “Repeat
Variable” blank and hit “Populate”.

Note:
• “Repeat Variables” are completely optional. All values can be entered manually if preferred.

You will also notice the “Clear Variables” button at the top of the Test Setup Page. This may be useful if you would
like to manually enter values into a Test Setup without having to worry about out-of-date or invalid variables that were
automatically populated. This button clears ALL variable values - not just the “Repeated Variable” values.

34 Chapter 4. Executing Tests

Touchstone Documentation, Release 6.2.1

Fixtures in a TestScript define a set of resource instances that will be used as part of the setup, test, and teardown
sections during TestScript execution. In Touchstone, those fixtures can be defined statically within the TestScript or
they can be defined dynamically and the resource instance for the fixture is provided to the testscript as part of the test
setup. More information about Fixtures can be found in the FHIR Testing Implementation Guide.

4.2 Dynamic Fixtures

Static fixtures are those that the testscript author uploads to Touchstone. The tester cannot change the content of such
fixtures. In testscripts, they are defined using the fixture element:

Dynamic Fixtures, on the other hand, are not uploaded by the testscript author. The tester has to specify the content
of such fixtures before launching test executions. In testscripts, they are defined using a FHIR extension:

4.2. Dynamic Fixtures 35

https://www.hl7.org/fhir/testing.html#fixtures

Touchstone Documentation, Release 6.2.1

• id – This is similar to static fixture id. It identifies the fixture and can be referenced in testscript variables and
operations.

• resourceType – Used to convey the FHIR resource type to the tester on Test Script Execution and Conformance
screens. The resourceType specified in the fixtures contents is not validated against the extension resourceType
when tester saves or executes the test setup. Testscript author can define a request assertion for resource to ensure
tester has submitted the right resource type.

• contentType – Used to validate the contents of the fixture for proper JSON/XML format when tester saves or
executes the test setup. Valid values are JSON and XML. Basic JSON/XML validation is performed. If the
content is invalid JSON/XML, then tester is prevented from saving the test setup.

• description – Used to inform tester about the purpose of the fixture.

• hint – Used to inform tester about the purpose of the fixture.

You can learn more about this extension by visiting AEGIS Touchstone Testing Implementation Guide.

The dynamic fixture can be referenced in testscript variables and operations just like static fixtures:

The next sections cover how the tester can specify the content of dynamic fixtures.

4.2.1 Test Setup

When a test setup is created that involves a dynamic fixture, the tester is prompted to provide the fixture contents. The
fixture’s hint (defined in the testscript) is displayed within the input box (blue arrow below). The fixture’s description
is displayed when user hovers over the input box (red arrow below).

36 Chapter 4. Executing Tests

/touchstone/fhir/testing/1.4.0/StructureDefinition-testscript-dynamic-fixture.html

Touchstone Documentation, Release 6.2.1

Tester can enter the contents of the fixture and expand the input box using the drag handle (blue arrow below):

The dynamic fixtures used by a testscript execution are listed below the static fixtures on TestScript Execution screen:

4.2. Dynamic Fixtures 37

Touchstone Documentation, Release 6.2.1

They can be used in variables and operations just like static fixtures:

Note: Testscript authors should define a request assertion for the fixture’s resource-type after testscript
operations that utilize a dynamic fixture. Touchstone does not validate the resource-type of a dynamic
fixture when tester saves the test setup.

38 Chapter 4. Executing Tests

Touchstone Documentation, Release 6.2.1

<action>
<assert>
<description value="Confirm that the submitted resource type is Patient.

→˓"/>
<direction value="request"/>
<resource value="Patient"/>
<warningOnly value="false"/>

</assert>
</action>

4.2.2 Conformance Testing

On the Conformance Current page, the tester is prompted for input the same way as on the Test Setup screen:

4.3 Test Executions

To launch a test execution, you can take the following steps:

1. Click the Execute button on the Test Setup screen or the Test Setups / List screen:

4.3. Test Executions 39

Touchstone Documentation, Release 6.2.1

2. After clicking on Execute you’ll be taken to the Test Execution screen where you can monitor the status of your
overall test execution. The page will automatically refresh every few seconds, but you can also manually refresh
the page by clicking the Refresh button:

40 Chapter 4. Executing Tests

Touchstone Documentation, Release 6.2.1

4.4 OAuth2 Test Executions

When running a Touchstone test execution against a FHIR server that is OAuth2 enabled, there are a few key changes
that you will run into, depending on if the server is using a Static Token or a Dynamic Token.

4.4.1 Static Token

1. When a Test System is OAuth2 enabled and is set to use a Static Token, the Test Setup page will include the Static
Token field when the Test System is selected as the Destination server. This field can be overwritten by the user
if necessary:

4.4. OAuth2 Test Executions 41

Touchstone Documentation, Release 6.2.1

2. The test execution will then begin, using the Static Token in the OAuth2 handshake with the FHIR server:

4.4.2 Dynamic Token

There are three different Grant Types that a Test System can use if it is using a Dynamic Token. One is Authorization
Code, one is Client Credentials, and the other is JWT Assertion. They each have slightly different flow for the user
when executing tests.

4.4.2.1 Authorization Code

1. When a Test System is OAuth2 enabled and is set to use a Dynamic Token with the Authorization Code grant
type, the Test Setup page will look like the traditional Test Setup page:

2. The test execution will begin, only this time, you will be prompted with a new window that will explain that you
will be redirected to an external URL that will complete the OAuth2 Authorization step in the Test Execution
process:

42 Chapter 4. Executing Tests

Touchstone Documentation, Release 6.2.1

• Requested Scopes – Scopes requested by the user to the Authorization server.

• Operation – The operation being performed.

• Test – The particular test related to OAuth2 Authorization.

• Test Script – The overall Test Script related to OAuth2 Authorization.

• URL – External URL that the user will be taken to for login.

3. When you are redirected, you will be asked to use a login for the Authorization service that is in front of the
FHIR server. The example below is the one for our WildFHIR OAuth2 enabled FHIR servers:

4.4. OAuth2 Test Executions 43

Touchstone Documentation, Release 6.2.1

4. Once you are redirected back to Touchstone after the successful login to the Authorization service, in the back-
ground, Touchstone will be taking the Authorization Code recieved by the Authorization service and sending it
back to trade it in for a Token that it will be able to use to access the FHIR server. If there is another test in your
Test Setup that requires a login to and Authorization service, then you will be prompted again with the OAuth2
Authorization window, and repeat the process. Once the execution completes, the Test execution screen will
present you with the results of the tests:

44 Chapter 4. Executing Tests

Touchstone Documentation, Release 6.2.1

4.4.2.2 Client Credentials

1. When a Test System is OAuth2 enabled and is set to use a Dynamic Token with the Client Credentials grant type,
the Test Setup page will look like the traditional Test Setup page:

2. After starting the execution of the Test Setup, Touchstone will seem to run the Test Execution like it traditionally
does. However, in the background, Touchstone is making a direct call to the OAuth2 server and retrieving the
Token by using the Client ID and Client Secret that is saved to the Test System. The Token that is retrieved is then
used to access the FHIR server right away. There is no extra step of going to login to an Authorization service
because the Client ID and Secret are already trusted with the OAuth2 server, allowing a direct grant of the token.
Once the execution completes, the Test execution screen will present you with the results of the tests:

4.4. OAuth2 Test Executions 45

Touchstone Documentation, Release 6.2.1

4.4.2.3 JWT Assertion

1. When a Test System is OAuth2 enabled and is set to use a Dynamic Token with the JWT Assertion grant type,
the Test Setup page will look like the traditional Test Setup page:

2. After starting the execution of the Test Setup, Touchstone will seem to run the Test Execution like it traditionally
does. However, in the background, Touchstone is making a direct call to the OAuth2 server and retrieving the
Token by using the Client ID and JWT Signing Algorithm chosen in the Test System Setup. The Token that is
retrieved is then used to access the FHIR server:

46 Chapter 4. Executing Tests

Touchstone Documentation, Release 6.2.1

4.5 Test Execution Results

To get a detailed report on your test execution, you can take the following steps:

1. Click on the Test Script Execution link of interest on the Test Execution screen:

2. You can click on a Test of interest within the Tests section to get an expanded view of the test results:

3. You can click on the ...more link to get detailed information on what took place during an operation:

4.5. Test Execution Results 47

Touchstone Documentation, Release 6.2.1

4. You can click on the Request Body and Response Body links to get the payloads in a separate window:

If you click on the Test: Step3-UpdatePatient link again (above), it will collapse this Test view and get
you back to the initial view.

The Test Script link will take you to the actual Test Script that was executed for this test execution (and not
the latest version that’s there in the system). That’s important for research. Similarly, the fixture and profile links
will take you to the actual fixtures and profiles used during test execution:

48 Chapter 4. Executing Tests

Touchstone Documentation, Release 6.2.1

For more information on fixtures, profiles, and variables please refer to the TestScript FHIR specification at
http://build.fhir.org/testscript.html.

4.6 FAQ

1. I have registered into Touchstone but am unable to execute tests. To execute tests, you must either create a new
organization or become a member of an existing organization.

2. When I try to re-execute a previous test execution, it says that the Test Setup could not be found. You probably
deleted the Test Setup. Just recreate it in Test Definitions screen.

3. When I try to re-execute a previous test execution or click on a previous Test Setup, the test scripts section appears
empty. The test scripts in your test setup have likely been removed from the system. This may not be obvious.
If the path to the script changes, then the script is treated by the system as a new one. You can recreate your test
setup in Test Definitions screen.

4. When executing a client-side test script, I have submitted what the system asked me to but my operation execution
is still stuck on `Waiting for Request` Make sure you are sending your USER_KEY in the request header. The
sections Test execution matching and Exchanges screen cover this in great detail.

5. When creating a Test Setup I get an error saying that the test scripts are not using the same validator. Touchstone
will enforce one Validator per Test Setup. Either make sure that all the tests you want to run are using the same
Validator or create seperate Test Setups for any Tests that require a different Validator.

4.6. FAQ 49

http://build.fhir.org/testscript.html
/touchstone/userguide/html/client-testing/matching.html#execution-matching
/touchstone/userguide/html/client-testing/exchanges.html#exchanges-screen

Touchstone Documentation, Release 6.2.1

6. Why is my Bearer Token different in the Test Execution than the one I provided. Touchstone is Base64Encoding
the operation.requestHeader.value. More information on this can be found in OAuth Capabilites.

7. The server under test is returning a 401 error instead of good response. Verify the Test System setup. Is the
Client ID/Client Secret correct for Oauth2 enabled systems? Are the scopes correct?

8. I cannot get a response from my server at all. Is your endpoint correct? Is your Test System accessible outside your
firewall? Does your organization need to white-list Touchstone? Check with Touchstone_Support@aegis.net for
full list of IP ranges.

9. My server sent a CapabilityStatement, but Touchstone indicated a problem. Touchstone will automatically val-
idate a Test System CapabilityStatement when pulled, even when the system is not yet under test. Touchstone
WILL still allow that system to continue testing, but will remind the tester of the issues.

10. My server doesn’t have a CapabilityStatement Touchstone will still allow that system to continue testing, but will
remind the tester at each test that it is required per the FHIR specification. Systems that are identified as SMART-
on-FHIR systems will need to provide a SMART Well-Known Configuration for most testing in Touchstone.

11. How do fixtures get uploaded to Touchstone and referenced by TestScripts? Fixtures are uploaded along with the
TestScripts and should be referenced by a relative/absolute file path of Touchstone’s folder structure. Best practice
is to include a _reference/resources folder and use “./_reference/resources/filename.json” as the reference value.

50 Chapter 4. Executing Tests

/touchstone/userguide/html/testscript-authoring/oauth-capabilities.html#base64encoding
mailto:Touchstone_Support@aegis.net

CHAPTER

FIVE

MULTI-PROFILE TESTING

Touchstone supports multi-profile testing, where a single test can be run against multiple different validators. Test
Scripts and fixtures are validated both upon upload and at test execution. Note, to associate a Test Script to multiple
validators, those additional validators need to be set up in Touchstone. Please contact Touchstone_Support for more
information.

5.1 Validator Testing

The Test Definitions in Touchstone indicate to users which Validator(s) are associated to a Test Script. Validators are
associated to a Test Script at the time the script is uploaded to Touchstone. The Validator column in Test Definitions
will indicate if the Test Script is associated to a single (blue arrow) or multiple validators (red arrow).

These differences can also be seen at test setup.

51

mailto:touchstone_support@aegis.net

Touchstone Documentation, Release 6.2.1

• With just one Validator selected:

• With multiple Validators selected:

Note: Test Scripts within a Test Setup must all have the same default Validator(s).

5.1.1 Uploading

While any Test Editor can set the Base Specification Validator when uploading Test Scripts, only users that have the
IGV Package Uploader Role will have the ability to view and select a custom Validator.

Validators for a Test Script or Test Script group can be set at either upload or edit. Regardless of whether a single or
multiple validators are selected during upload, all artifacts within the upload package will have the selected Validator(s)
associated to them.

Base Specification Validators are chosen from the Validator drop-down, and if any additional Validators are available
for that Base Specification Validator, they will be listed below that selection with a checkbox to select.

• Selecting a Base Spec Validator. Note that one Validator is selected in the drop down menu and none of the Additional TestSetup Validators are checked.

52 Chapter 5. Multi-Profile Testing

Touchstone Documentation, Release 6.2.1

• Selecting multiple Validators. Note that the Additional TestSetup Validators are checked to give the tester options at test setup.

5.1. Validator Testing 53

Touchstone Documentation, Release 6.2.1

5.2 Updating Validators

Validators can be edited and updated by any user with the IGV Package Uploader Role. This role is limited to users
in Orgs with an Enterprise Subscription. The original Role and Validator assignment will be handled by Touchstone
Support, but any Org Rep with the IGV Package Uploader Role can assign the same IGV Package Uploader privileges
to another User in the same organization.

Any Users with the appropriate role can navigate to the IG Validation Packages link on the Test Definitions screen.

At this page there are multiple drop down menus to select which validator you want to edit. The Spec menu filters the
available validators by the base FHIR spec they depend on, and the Validator menu that lets you choose from your
list of assigned Validators which one you want to edit.

Once you have a Validator selected for editing, you can either upload a validation package (and replace an existing
package of the same name) or delete a validation package.

Warning: Either deleting or replacing a Validation Package are permanent. Make sure that you have a back-up of
your validation packages in your own repository before removing or replacing one within Touchstone.

To upload a Validation Package:

1. Click the Upload link at the top of the page and

54 Chapter 5. Multi-Profile Testing

Touchstone Documentation, Release 6.2.1

2. Browse to the file containing the Validation Package you want to upload.

• Validation Package – The collection of resources from a FHIR® Implementation Guide to be used by a FHIR® Validation Engine when verifying and validating the conformance of profiled FHIR® resources. Validation packages can be uploaded in two different formats:

– ZIP package format - a ZIP archive of the validation resources in a flat folder structure; i.e. no root or
sub-folders present.

– TGZ package format - an NPM (Node Package Manager) gzipped tarball containing the validation
resources in FHIR® directory structure defined via a package.json file.

If the package being uploaded is too large to process quickly, then Touchstone will handle the upload asynchronously
and an Uploading prompt will display to indicate that the upload is still in-progress. During the Validation package
upload, any Test Script that is attempted to run against that Validator will fail.

To delete a Validation Package:

1. Click on the red Delete X for the row you want to delete.

Inspecting Validation Packages:

Any Validation Package in one of your Validators can be inspected to see what resources it contains.

1. Click on the Package ID of the Validation Package you want to inspected

5.2. Updating Validators 55

Touchstone Documentation, Release 6.2.1

2. If the Validation Package is very large, this screen may take a few additional moments to load fully.

• Item ID – Logical id of the structure definition

• Item Name – Name for the structure definition (computer friendly)

• Resource Type – Type defined or constrained by the structure

• Item Path – The file structure inside the upload file that points to the resource

• Item URL – Canonical identifier for the structure definition, represented as a URI (globally unique)

5.3 Viewing Validators

Users can view the Implementation Guide (IG) packages loaded in a particular Validator by clicking the “IG Validation
Packages” hyperlink on the Test Definitions page.

On the IG Validations Package page select the FHIR version from the Spec drop down. The Validator drop down will
populate with the list of Validators for the selected Spec version. Select a Validator from the drop down to view the IG
Validation Packages loaded in the selected Validator

56 Chapter 5. Multi-Profile Testing

Touchstone Documentation, Release 6.2.1

5.3.1 To inspect the contents of a Validation Package

Any Validation Package in one of your Validators can be inspected to see what resources it contains.

1. Click on the Package ID of the Validation Package you want to inspected

2. If the Validation Package is very large, this screen may take a few additional moments to load fully.

• Item ID – Logical id of the structure definition

• Item Name – Name for the structure definition (computer friendly)

• Resource Type – Type defined or constrained by the structure

• Item Path – The file structure inside the upload file that points to the resource

• Item URL – Canonical identifier for the structure definition, represented as a URI (globally unique)

5.3. Viewing Validators 57

Touchstone Documentation, Release 6.2.1

58 Chapter 5. Multi-Profile Testing

CHAPTER

SIX

ORG GROUPS

Organizations can come together to form Org Groups. Access to test systems, test execution results, and test scripts
can be controlled at the Org Group level.

6.1 Creating Org Group

Org Groups can be created by Touchstone Admininstrators. Please contact us at touchstone_support@aegis.net if you
need an Org Group to be created. We will analyze your needs and see if Org Group will be a right fit. If so, we will
create the Org Group and assign an Org Group Rep who will be responsible for managing organization membership
into the Org Group.

To explain the concepts revolving Org Groups, we will use the following two Org Groups for the examples in this
section:

• Org Group A has three approved organizations as its members: Organization0001, Organization0002, and Orga-
nization0003.

• Org Group B has three approved organizations as its members: Organization0004, Organization0005, and Orga-
nization0006.

• Org Group A has Org1Rep as its Org Group Rep

• Org Group B has Org4Rep as its Org Group Rep

59

mailto:touchstone_support@aegis.net

Touchstone Documentation, Release 6.2.1

6.2 Joining Org Group

To have your organization join an existing Org Group, you can take the following steps:

1. Sign In in as the Org Rep of your organization.

2. Click on Organization / Org Groups menu link

3. Click the Join link of the Org Group you wish you join. Gary as the Org Rep of Initech decides to have Initech
become a member of Org Group B.

4. After you confirm, your request will be submitted to the Org Group Rep of that Org Group. In this case it will
be submitted to Org4Rep:

5. After your request has been submitted, you will need to wait for approval by the Org Group Rep. You will be
notified of approval (or rejection) via email. Check your Spam folder in your email system in case the emails get

60 Chapter 6. Org Groups

Touchstone Documentation, Release 6.2.1

directed there.

6.3 Leaving Org Group

If you wish for your organization to leave an Org Group, you can take the following steps:

1. Sign In as the Org Rep of your organization

2. Click on Organization / Org Groups menu link

3. Click the Leave link of the Org Group you wish you join:

6.3. Leaving Org Group 61

Touchstone Documentation, Release 6.2.1

4. After you confirm, your organization will no longer be part of that Org Group:

Gary clicks on Cancel and stays in Org Group B.

6.4 Access

6.4.1 Test System access

If your organization belongs to an Org Group, you can widen the access rights for viewing and execution against your
test system to the Org Group level:

In the case above, the user is permitting all organizations that belong to Org Group B to execute test scripts against
the test system.

62 Chapter 6. Org Groups

Touchstone Documentation, Release 6.2.1

User from Organization0004 (that belongs to Org Group B) can execute test scripts against Initech Test System
1:

On the other hand, user from Organization0008 (which does not belong to Org Group B) will not be able to execute
test scripts against Initech Test System 1. The test system Initech Test System 1 will not appear in the
Destination drop-down:

6.4.2 Test Definition access

If your organization belongs to an Org Group, you can widen the access rights for viewing of Test Groups and Test
Definitions to the Org Group level.

There are two ways to do that:

1. You can assign Org Group access during upload time:

6.4. Access 63

Touchstone Documentation, Release 6.2.1

2. You can edit an existing test group and modify its access:

64 Chapter 6. Org Groups

Touchstone Documentation, Release 6.2.1

After Initech widens the access to Org Group B, user from Organization0004 (that belongs to Org Group B) will be
able to access the Patient test group in Initech and execute test scripts in that test group:

But user from Organization0008 (which does not belong to Org Group B) will not be able to access the Patient test
group in Initech and its test definitions:

6.4. Access 65

Touchstone Documentation, Release 6.2.1

6.4.3 Test Results access

If your organization belongs to an Org Group, viewing of test results are automatically widened to the Org Group level
if the Org Group is Open.

Org Group Private
In the case below, Initech and Organization0004 are members of a Private group.

That means members cannot view each others’ test executions.

Notice that Gary from Initech can view only Initech’s test executions:

And Org4Rep from Organization0004 can view only Organization0004’s test executions:

66 Chapter 6. Org Groups

Touchstone Documentation, Release 6.2.1

Org Group Open
In the case below, Organization0001 and Organization0003 are members of an Open group.

That means members can view each others’ test executions.

Notice that Org1Rep from Organization0001 can view test executions by both Organization0001 and Organization0003:

Similary, Org3Rep from Organization0003 can view test executions by both Organization0001 and Organization0003:

6.4. Access 67

Touchstone Documentation, Release 6.2.1

68 Chapter 6. Org Groups

CHAPTER

SEVEN

CONFORMANCE TESTING

Users can monitor the conformance of tests systems to a specification based on Conformance Suites available in
Touchstone.

Prior to Touchstone 5.0.0, users were limited to pre-configured conformance tests in Touchstone. The following
Conformance-testing capabilities have been added in Touchstone 5.0.0:

• Organizations (with the appropriate subscription level) can create their own Conformance Suites with custom
test groups and test scripts.

• Client (Peer-to-Peer) interactions can be monitored as part of Conformance (in addition to Server interactions).

• Organizations can optionally make their Conformance Suites accessible to members of their Organization only
or to members of their Org Group or to everyone.

• Conformance Suites and Results are versioned. This allows organizations to publish their results at any time and
continue their testing without affecting published results.

• Suite authors can allows users to publish conformance results or prevent them from doing so.

• Suite authors can have conformance results tracked separately for XML and JSON formats.

• Suite authors can have conformance results tracked separately for supported interactions (in the test system’s
capability statement) or disregard the capability statement and include all interactions.

7.1 Conformance Suites

Test Groups allow one or more test scripts to form a unit that can be executed together as a batch.

Conformance Suites allow one or more of those test groups to form a unit for tracking conformance of test systems to
a specification.

69

Touchstone Documentation, Release 6.2.1

7.1.1 Listing

Conformance Suites can be accessed here or by navigating to Conformance / Suites menu link:

• Owned By – The organization that is maintaining the Conformance Suite definition.

• Validator – The AEGIS Validator that is used to validate request and response payloads in test script executions
within the suite.

• Categorization – If a Conformance Suite is composed of more than one test group, then Categorization is required
and interaction counts will be aggregated based on the Categorization definition.

• Test Groups – The list of test groups that form the Conformance Suite.

• Anchor System
– If the suite is a Server suite, then the Anchor System will be a Client system that all Server SUTs

will use for test executions so conformance results would be consistent in the suite.

70 Chapter 7. Conformance Testing

/touchstone/userguide/html/conformance-suite-authoring/categorization.html
https://en.wikipedia.org/wiki/System_under_test

Touchstone Documentation, Release 6.2.1

– If the suite is a Client suite, then the Anchor System will be a Server system that all Client SUTs will
use for test executions so conformance results would be consistent in the suite.

• Filters: Supported – If checked, users will be offered the Supported by CapabStmt checkbox on conformance
results screens. They would be able to filter results by supported interactions in the capability statement in
addition to the default (All):

• Filters: Formats – If checked, users will be offered the Format dropdown on conformance results screens. They
would be able to filter results by individual formats (JSON / XML) in addition to the default (All):

• Publishable – If checked, users will be offered the option of publishing conformance results. Those results along
with the associated test executions would become publicly accessible if published.

7.1. Conformance Suites 71

https://en.wikipedia.org/wiki/System_under_test

Touchstone Documentation, Release 6.2.1

7.1.2 Launching Executions

To select a given Conformance Suite (for execution), you can click on the name of the suite on the Conformance Suites
page:

That takes you to the Current (Conformance) screen which is covered in the next section.

7.2 Current

7.2.1 Single Test Group

The Current (Conformance) page represents the latest Conformance metrics for the selected Conformance Suite and
Test System.

1. You can get to the Conformance page by clicking on the Conformance / Current link on the left menu. The
Conformance Suite below contains a single test group. Initially, assuming no test executions, you should see all
grey on the Results Summary chart:

72 Chapter 7. Conformance Testing

Touchstone Documentation, Release 6.2.1

The dropdowns for Suite and Server are filtered to those that you have access to.

Note: When a Conformance Suite contains a single test group, the test group chart and the Results
Summary chart (red rectangle below) are the same.

The center-most band (red arrow) that’s selected by default is the root of the Results Summary chart (red
rectangle below). That band represents the root of the /FHIR 4.0.1-Basic single Test Group that composes
this Conformance Suite.

7.2. Current 73

Touchstone Documentation, Release 6.2.1

2. If you’d like to focus only on interactions that your capability statement supports, click on the Supported Only
checkbox:

Notice that some bands have changed to silver (blue arrows above). Those are the areas that are not supported by
this test system. Only the interactions that are supported by the Capabilities statement are contributing towards

74 Chapter 7. Conformance Testing

Touchstone Documentation, Release 6.2.1

‘% Conformance’.

Note that the Supported checkbox may not be available for all Conformance Suites. The Suite owner can choose
to make the checkbox unavailable for a suite in which case all interactions will contribute towards ‘% Confor-
mance’ regardless of support in Capability Statement.

Unsupported Interactions

Notice that the A-C group is not supported yet by the Capability Statement:

You can drill down by clicking on the A-C link within the table:

The Results Summary chart changes focus to a deeper level (blue arrow below). The unsupported groups have
an X next to them (red arrow below):

7.2. Current 75

Touchstone Documentation, Release 6.2.1

You can continue drilling down by clicking on the link within the table with an X until you get to the leaf
node:

76 Chapter 7. Conformance Testing

Touchstone Documentation, Release 6.2.1

You can see the explanation (above) for why the test script along with its parent nodes were
excluded from contributing towards the Results Summary ‘% Conformance’.

3. Click on the root node of the Results Summary chart so the center-most band is highlighted:

7.2. Current 77

Touchstone Documentation, Release 6.2.1

4. Suppose you’re interested in executing tests for the Patient resource. You can hover over the Results Summary
chart to find the Patient resource:

78 Chapter 7. Conformance Testing

Touchstone Documentation, Release 6.2.1

5. Click on the /FHIR4-0-1-Basic/P-R/Patient band (below arrow below) on the Results Summary chart:

7.2. Current 79

Touchstone Documentation, Release 6.2.1

You can see there are 4 test scripts (on the right) with a total of 44 Patient interactions (below arrow above).

6. This particular suite offers filtering by formats (All, XML, JSON). Perhaps you’re interested in testing out the
JSON format first. You can select JSON in the Formats dropdown:

The test scripts and counts change to reflect the JSON interactions available in the suite:

80 Chapter 7. Conformance Testing

Touchstone Documentation, Release 6.2.1

There are a total of 22 JSON Patient interactions (below arrow above) available in 2 test scripts in this suite.

6. Click on the Execute button if you want to launch one test script:

7. The test will get launched in the background. You might need to wait for a few seconds before refreshing the
screen to see the status change to Running and then to either Pass or Fail:

7.2. Current 81

Touchstone Documentation, Release 6.2.1

Notice that the interaction counts in the summary tables have changed and so have the percentages. The overall
“% conformant” is now at 1%.

8. Select the parent band in the Results Summary chart and a bunch of test scripts and click on Execute Selected:

Notice that ‘% Conformance’ has gone up to 4%. The “% conformant” does take into account all the interactions
that have not been executed yet. It’s at 4% because we have only executed 4 test scripts.

82 Chapter 7. Conformance Testing

Touchstone Documentation, Release 6.2.1

7.2.2 Multi Test Group

The Current (Conformance) page represents the latest Conformance metrics for the selected Conformance Suite and
Test System.

1. Change the Conformance Suite to one that’s composed of more than 1 test group:

Also change the Format to All and Supported to unchecked :

7.2. Current 83

Touchstone Documentation, Release 6.2.1

2. Notice that even though, this is the first time you’ve used this Suite, the ‘% Conformance’ is already at 1%:

This is because the /FHIR4-0-1-Basic test group is also part of FHIR4-0-1-Basic-Server conformance suite
and we had executed the 4 test scripts in green above earlier against the same test system. See this FAQ for more
details.

The Conformance Suite contains 3 Test Groups (blue rectangle below).

The center-most band (red arrow) that’s selected by default is the root of the Categorization chart (red rectangle
below). It’s FHIR 4.0.1-Standard-Server in this case. When a Conformance Suite has more than one Test
Group, the interactions are grouped and summarized into the Categorization chart.

The charts on the right (blue rectangle) feed into the Categorization chart (red rectangle). The Categorization
chart is driven by the categories in FHIR specification’s Resource List and is customizable by the suite owner.
The current band has a black border circle (red arrow above). The outermost bands of charts on the right are
individual test scripts in Touchstone. Those that contain interactions for the current band (FHIR 4.0.1 in this
case) will get a dark-grey border. In this case, because we’re on the root band in the Categorization chart, all
outermost bands on the right have a dark-grey border (blue arrow above).

The Test Scripts table below the charts will show all the test scripts for the currently selected band. Because
we’ve selected the root band in the Categorization chart, all test scripts in FHIR 4.0.1-Standard-Server suite
will be listed in this table.

Note: When a Conformance Suite contains multiple test groups, Categorization is mandatory for the

84 Chapter 7. Conformance Testing

http://build.fhir.org/resourcelist.html

Touchstone Documentation, Release 6.2.1

suite, and the Categorization chart and the Results Summary chart are the same.

3. If you’d like to focus only on interactions that your capability statement supports, click on the Supported Only
checkbox:

Notice that some bands have changed to silver (red arrows above). Those are the areas that are not supported by
this test system. Only the interactions that are supported by the Capabilities statement are contributing towards
‘% Conformance’.

Note that the Supported checkbox may not be available for all Conformance Suites. The Suite owner can choose
to make the checkbox unavailable for a suite in which case all interactions will contribute towards ‘% Confor-
mance’ regardless of support in Capability Statement.

4. Suppose you’re interested in executing tests for the Patient resource. You can hover over the Results Summary
chart to find the Patient resource (blue arrow below):

As you hover over each band, the test scripts that contain tests for that area are highlighted in dark grey on the
right (black arrows below).

7.2. Current 85

Touchstone Documentation, Release 6.2.1

5. Click on the /FHIR4-0-1-Standard-Server/Resources/Base/Individuals/Patient band (below arrow below) on the
Results Summary chart:

All the test scripts in charts on the right that have interactions for the Patient resource get a dark-grey border
(green, black, and purple arrows). The counts of those interactions are displayed for the corresponding group
underneath it.

There are a total of 846 Patient interactions available in 160 test scripts in all test groups in this suite. See blue
arrows.

• In Connectathon24 test group, there are a total of 266 Patient interactions. See green arrows.

• In Basic test group, there are a total of 168 Patient interactions. See black arrows.

• In Advanced test group, there are a total of 412 Patient interactions. See purple arrows.

6. This particular suite offers filtering by formats (All, XML, JSON). Perhaps you’re interested in testing out the
JSON format first. You can select JSON in the Formats dropdown (red arrow).

86 Chapter 7. Conformance Testing

Touchstone Documentation, Release 6.2.1

The test scripts and counts change to reflect the JSON interactions available in the suite.

There are a total of 442 JSON Patient interactions available in 95 test scripts in all test groups in this suite. See
blue arrows.

• In Connectathon14 test group, there are a total of 134 JSON Patient interactions. See green arrows.

• In Basic test group, there are a total of 82 JSON Patient interactions. See black arrows.

• In Advanced test group, there are a total of 226 JSON Patient interactions. See purple arrows.

7. Flip the sort direction to Descending:

8. Click on the Execute button if you want to launch one test script:

7.2. Current 87

Touchstone Documentation, Release 6.2.1

9. The test will get launched in the background. You might need to wait for a few seconds before refreshing the
screen to see the status change to Running and then to either Pass or Fail:
Notice that the interaction counts in the summary tables have changed and so have the percentages. The overall
“% conformant” is now at 4%.

10. Select a bunch of test scripts and click on Execute Selected:

88 Chapter 7. Conformance Testing

Touchstone Documentation, Release 6.2.1

Notice that ‘% Conformance’ has gone up to 6%. The “% conformant” does take into account all the
interactions that have not been executed yet. It’s at 6% because we have only executed a few test scripts.

7.2. Current 89

Touchstone Documentation, Release 6.2.1

7.3 Results Summary

This Results Summary page gives you the Result Summaries (left chart on Current page) of different test systems for
the selected Conformance Suite.

1. You can get to the Results Summary page by clicking on Conformance / Results Summary link on the left
menu:

We see one result for FHIR4-0-1-Basic-Server Conformance suite and one for FHIR4-0-1-Standard-Server suite:

90 Chapter 7. Conformance Testing

Touchstone Documentation, Release 6.2.1

2. Execute some test scripts in FHIR4-0-1-Basic-Server Conformance suite on Current page against a different
test system:

7.3. Results Summary 91

Touchstone Documentation, Release 6.2.1

Notice that we’re executing both XML and JSON test scripts against the FHIR 4-0-1 QA Server test system.

3. Go back to the Results Summary page and select FHIR4-0-1-Basic-Server Conformance suite. Notice the extra
test system in the results when JSON format is selected:

We had executed JSON test scripts against both test systems.

Hover over the text to get more information about the results:

92 Chapter 7. Conformance Testing

Touchstone Documentation, Release 6.2.1

Hover over the central band to get the aggregated counts:

7.3. Results Summary 93

Touchstone Documentation, Release 6.2.1

4. Changing the format selection to All will continue to show both test systems as All includes JSON and we
executed JSON test scripts against both test systems:

However, the aggregated counts will be different when the format selection is All:

94 Chapter 7. Conformance Testing

Touchstone Documentation, Release 6.2.1

5. Change the format selection to XML. Notice that the listing includes only the server that has XML results:

7.3. Results Summary 95

Touchstone Documentation, Release 6.2.1

Hover over the central band to get the aggregated counts:

96 Chapter 7. Conformance Testing

Touchstone Documentation, Release 6.2.1

6. Change the view to Tabular:

7. Type ‘person’ in the Interactions select box to filter for Person resource interactions and select it:

7.3. Results Summary 97

Touchstone Documentation, Release 6.2.1

8. Notice that you can compare test systems at more granular levels. Hover over one of the progress bars:

Note: The Interactions filtering is available only on Tabular view and only when a specific Conformance
Suite version is selected.

It becomes disabled when:

a. Graphical view is selected. This is because the summary charts in Graphical view already break
down the interactions within the chart itself.

98 Chapter 7. Conformance Testing

Touchstone Documentation, Release 6.2.1

b. All is selected for Conformance Suite version. This is because different versions of a given Confor-
mance Suite can have completely different test groups and test scripts.

9. You can go to the Unpublished result details by:

a. Clicking on a progress bar in Tabular view:

b. Clicking on a chart in Graphical view:

7.3. Results Summary 99

Touchstone Documentation, Release 6.2.1

10. Unpublished Conformance details page:

100 Chapter 7. Conformance Testing

Touchstone Documentation, Release 6.2.1

7.4 Publishing Results

Only Org Rep users can publish results for test systems that their organization owns.

Conformance Results go through 3 stages: Current ==> Unpublished ==> Published

When test execution completes for one or more test scripts that are part of a Conformance Suite, a snapshot of the
Current Conformance results is taken to create the Unpublished results for a given Conformance Suite version against
a given test system.

When the Org Rep publishes the results, a snapshot of the Unpublished results is taken to create the Published re-
sults. Users can continue executing test scripts for the same Conformance Suite and test system without impacting the
Published results.

1. Access the Results Summary page as an Org Rep and select Unpublished view:

7.4. Publishing Results 101

Touchstone Documentation, Release 6.2.1

2. Click on the Publish button under one of the charts in Graphical view:

102 Chapter 7. Conformance Testing

Touchstone Documentation, Release 6.2.1

Note: The Publish button will be visible only to Org Rep user in Unpublished view and only if the results
have not been already published.

3. Conform that you want to publish:

7.4. Publishing Results 103

Touchstone Documentation, Release 6.2.1

4. Notice that the Publish button is no longer displayed for the results that just got published:

5. Notice that the published results are accessible to guest users on the Published view:

104 Chapter 7. Conformance Testing

Touchstone Documentation, Release 6.2.1

6. Guest user can go to Published details by clicking on the chart:

7.4. Publishing Results 105

Touchstone Documentation, Release 6.2.1

7. Published Conformance details:

8. To unpublish the results, an Org Rep needs to access the Published view and click on the Unpublish button:

106 Chapter 7. Conformance Testing

Touchstone Documentation, Release 6.2.1

9. Conform that you want to unpublish:

10. Unpublished successfully:

7.4. Publishing Results 107

Touchstone Documentation, Release 6.2.1

7.5 FAQ

1. The ‘% Conformance’ on the Current page is sometimes different from Result Summary page for Unpublished
results of a given suite and test system. Why is that? If a suite is newly created or the version has incremented,
there might still be test executions for the test scripts contained within the suite against the selected system. The
Current screen takes into account all those test executions whereas Results Summary screen does not. The two
screens will get synchronized upon completion of the next test execution.

This is indicated on the Current screen when the two results are out of sync:

2. I’ve selected a band and don’t see any test scripts. Why is that? Make sure you’ve cleared the filter box (blue
arrow below):

108 Chapter 7. Conformance Testing

Touchstone Documentation, Release 6.2.1

3. When I click on the Test Script link, it sometimes pops the TestScript resource definition and at other times it
navigates to the Test Script Execution screen. If the test script has never been executed before (as is the case
below), clicking on the Test Script link will pop the Test Script resource definition.

If the test script has been executed already, then clicking on the Test Script link will take you to the Test Script
Execution screen. Aftr launching the execution, you may have to wait a few seconds before the Start time appears:

4. I reached a higher ‘% Conformance’ and the system has knocked the % down. I was green on certain bands
and now the system shows gray again. Why is that? This can happen if the conformance suite version has
incremented. It would be erroneous for Touchstone to continue to show green or red for a conformace suite
version that you haven’t executed yet.

The conformance results of previous versions are maintained though and you can see them on Results Summary
page by changing the Version dropdown:

7.5. FAQ 109

Touchstone Documentation, Release 6.2.1

5. The Conformance Current page is tedious. I don’t want to execute one test script at a time after I’ve reached my
desired ‘% Conformance’ level. You don’t need to. Touchstone stores the variable values you entered for test
scripts that require variable values. You can click on the root node (/FHIR4-0-1-Basic in this case), change the
page size to 300, check the “All” checkbox and click on “Execute Selected”. This will launch all the test scripts
as part of one execution.

6. Does my ‘% Conformance’ stay the same from one version of the suite to the next? No. It is monitored by version.
The ‘% Conformance’ resets to zero when a conformance suite version increments. Changes to test groups,
categorization, and other components of the suite could drastically change the interaction totals and meaning.

Please refer to Versioning for the list of events that can cause the suite version to increment.

7. Are the Conformance results going to be different from the results that I would get by executing tests via Test
Definitions screen? They are the same from execution standpoint. Test executions launched from Test Definitions
screen can be viewed on Conformance screens and vice versa. Every launch of test execution on Conformance
screens creates a Test Setup in the background and launches it. You can view those test setups on Test Setups
screen and launch from there if you like. The difference though is that Conformance screens relay the test system’s
conformance level while the test executions screens don’t.

110 Chapter 7. Conformance Testing

/touchstone/userguide/html/conformance-suite-authoring/versioning.html#versioning

Touchstone Documentation, Release 6.2.1

8. Why does my test system show up in the Test System dropdown if it doesn’t even support the validator version
that the suite is on? You may choose to execute test scripts of one specification version against a test system
that hasn’t been declared to support that specification version yet and see how it responds. After all, this is a
testing environment. For that reason, we don’t filter test system dropdown based on suite’s validator version. The
dropdown though displays only test systems that’s accessible by you and not all test systems.

7.5. FAQ 111

Touchstone Documentation, Release 6.2.1

112 Chapter 7. Conformance Testing

CHAPTER

EIGHT

CLIENT/PEER-TO-PEER TESTING

In Peer-to-Peer testing, test systems within your organization can exchange messages with other test systems within and
outside your organization. The interactions would take place via Touchstone proxy endpoints. This allows Touchstone
to capture the messages and run the assertions in test scripts.

Your test systems can both initiate and respond to requests from other test systems.

Here is a diagram that depicts such communication:

8.1 Launching Executions

To execute a Client-side test script, you can take the following steps:

1. Under Test Definitions, find the test script that supports client-side testing, select it, and click the Create Test
Setup button:

113

Touchstone Documentation, Release 6.2.1

2. Select your test system (client/initiator system) as the Origin. It’s marked in blue below. The target of the
exchange will be the Destination server and is marked in red below:

114 Chapter 8. Client/Peer-to-Peer Testing

Touchstone Documentation, Release 6.2.1

To get your server to appear in the Origin drop-down, you need to select the Client option as a supported profile
in your test system’s configuration:

8.1. Launching Executions 115

Touchstone Documentation, Release 6.2.1

3. Click on Execute button to launch the test execution:

116 Chapter 8. Client/Peer-to-Peer Testing

Touchstone Documentation, Release 6.2.1

4. You will land on the Test Execution screen. The Test Script will have sections that don’t need your intervention
(e.g. Setup and operations where <origin> element is missing). The test script execution proceeds until it hits
an operation where <origin> element is present and for which input is required by the client test system i.e. you.
That operation execution along with its test script execution and test execution will assume the status of Waiting
for Request at that point:

5. Click on the test script link above to get to the Test Script Execution screen:

8.1. Launching Executions 117

Touchstone Documentation, Release 6.2.1

In the panel highlighted above, you will find all the data you need to submit as a FHIR Client. It has the following
information:

• The HTTP method you need to use (GET, POST, PUT, etc.) and the URL you need to send your request
to. This URL will be the Touchstone Proxy URL and will be unique to each test system. It will be different
from the Base URL of the test system. The Proxy URL allows Touchstone to intercept the message and
execute the assertions for that operation execution.

• The Request payload (body) if the method is PUT or POST.

• The USER_KEY that needs to be in the request header. This USER_KEY value will be unique to each
user. It can be provided in the request header or request body and will be used by Touchstone to tie the
intercepted message to your test execution.

• Any other headers that are required (e.g. Accept, Content-Type, etc.).

Warning: It is important to match the request data being sent from your FHIR Client to the one
indicated in the panel above.

118 Chapter 8. Client/Peer-to-Peer Testing

Touchstone Documentation, Release 6.2.1

6. You might get the following error if you are in the initial stages of using your FHIR Client system in Touchstone:

For added security, Touchstone verifies that the the actual IP address of the request matches the IP address of
your test system in Touchstone. You get the error above if they don’t.

You can do one of the following to get around this error:

a. Add the IP address indicated in the message above (10.0.75.1 for the case above) to the list of IP addresses
of your test system:

b. Uncheck this box on your test system.

It is recommended to do option (a). If you do option (b), then other users can configure their test setups with
your test system playing Origin and submit requests from their FHIR Clients. This will give the impression
to end-users that the request came from your test system when in fact it came from another FHIR Client. If
you don’t have such a concern (because you have marked your client test system as accessible/executable
only by ‘My Org’), then option (b) is more convenient as you don’t have to change the test system’s IP
Address in Touchstone every time the IP address of your FHIR Client changes.

8.1. Launching Executions 119

Touchstone Documentation, Release 6.2.1

7. You continue to initiate from your client test system as required by any remaining Waiting for Request
operations until the test script execution completes successfully:

8.2 Execution Matching

When the Touchstone Proxy receives a request from the client system, it has to associate the request to the user’s
active test execution. There are three mechanisms in Touchstone to do that and they can be specified when editing the
client/origin test system:

1. Touchstone first looks for USER_KEY in the request headers. If it finds it, then it stops looking any further. For
client systems that can specify custom request headers, it is highly recommended to keep the default option of
USER_KEY as the matching mechanism:

120 Chapter 8. Client/Peer-to-Peer Testing

Touchstone Documentation, Release 6.2.1

Because each USER_KEY is unique to a user, Touchstone can find the matching active test execution even when
there are multiple active test executions from users within your organization. This makes the USER_KEYmatching
the least error-prone of the three options.

The instructions on the Test Script Execution’s waiting step are tailored for the matching mechanism chosen on
the client test system. When USER_KEY is chosen as the matching mechanims, the instructions are as follows:

You can regenerate your USER_KEY under My Settings if it has been compromised. You’ll know if it has been
compromised if your Waiting test executions progress to completion without any action on your part.

2. Touchstone then looks for ORG_KEY in the request header (if USER_KEY is missing). If it finds it, then it stops
looking any further.

If it’s difficult for your client test system to specify distinct USER_KEY values for each user within your organi-
zation, then using ORG_KEY will probably be easier than using USER_KEY as the ORG_KEY will be the same
for all users within the organization. You can select ORG_KEY matching mechanism on the client test system if
that’s the case:

8.2. Execution Matching 121

Touchstone Documentation, Release 6.2.1

The disadvantage of using ORG_KEY though is that only one test execution can be in WAITING_FOR_REQUEST
for the entire organization. Use of USER_KEY does not have this limitation. When using USER_KEY, multiple
test executions can be in WAITING_FOR_REQUEST status for the organization but each user can still have only one
test execution in WAITING_FOR_REQUEST status.

The instructions on the Test Script Execution’s waiting step are tailored for the matching mechanism chosen on
the client test system. When ORG_KEY is chosen as the matching mechanims, the instructions are as follows:

Each organization is assigned a unqiue ORG_KEY by Touchstone. It can be regenerated by the Org Rep on Edit
Organization screen if it has been compromised. You’ll know if it has been compromised if your Waiting test
executions progress to completion without any action on your part.

122 Chapter 8. Client/Peer-to-Peer Testing

Touchstone Documentation, Release 6.2.1

3. If both USER_KEY and ORG_KEY are absent in the request headers, then Touchstone tries to tie the request to the
user’s test execution by matching the actual IP address of the request to the IP address entered for the test system
in Touchstone.

This mechanism has the same limitation as ORG_KEY in that only one user within the organization can execute
client-tests at a time.

This mechanism has a further disadvantage. If the IP address detected is unknown to Touchstone, then Touchstone
will not be able to match the request message to the test execution and your operation execution will continue
to stay in Waiting for Request status. To work around this, you will always need to keep your IP address
up-to-date on the Test System screen:

You can explicitly specify this mechanism as the matching mechanism when editing the client test system:

8.2. Execution Matching 123

Touchstone Documentation, Release 6.2.1

Doing so will allow Touchstone to tailor the instructions on the Test Script Execution’s waiting step as follows:

Specifying Origin IP as the matching mechanism on Edit Test System screen will also allow Touchstone to
enforce constraints on concurrent launches of peer-to-peer test executions by users using the same client test
system as the Origin system for the same test script and against the same destination.

8.3 Exchanges Screen

This screen is applicable to both Touchstone-initiated and Client-initiated tests. It shows all the message exchanges
(interactions) that have taken place between test systems.

For example, you can specify your destination test system and a filter value of >300, >400, or >500 for Response Code
to see which exchanges caused your system to return these status codes:

124 Chapter 8. Client/Peer-to-Peer Testing

Touchstone Documentation, Release 6.2.1

8.3.1 Common Errors

Normally, when a client test system sends a request message to Touchstone Proxy, the Test Script Execution screen
should progress from Waiting for Request status to Running, and then to Waiting for Response, and finally
to Passed or Failed.

Sometimes, even though the request message has been sent to Touchstone Proxy, the Test Script Execution screen
continues to stay in Waiting for Request status:

You can visit the Exchanges My Org and Exchanges Unmatched screens to look for an error message (in red) that would
describe what happened.

Below are common errors that can be encountered:

Invalid origin IP ‘xxxxx’. If this is the IP address of one of your test systems, please register it on Test System screen.

8.3. Exchanges Screen 125

Touchstone Documentation, Release 6.2.1

This error can take place if USER_KEY and ORG_KEY request headers were not specified in
the request and the IP address that the request came from is unknown to Touchstone. You can
correct the IP address on the Edit Test System screen and resubmit the request:

Additionally, you can specify Origin IP as the matching mechanism if the client test system
cannot specify custom headers (USER_KEY or ORG_KEY) in the request.

On the other hand, if the client test system can specify custom headers, then it is highly recom-
mended to use the USER_KEY matching option and specify USER_KEY in the request header
during submission.

The actual request origin IP ‘xxxxxxx’ does not match any of the IP addresses stored for test system ‘Test System 1’ in
Touchstone. This test system was specified as the Origin in Test Setup. Please modify the Test Setup to use the right
Origin or add ‘xxxxxxx’ to the list of IP addresses on the Test System screen for test system ‘Test System 1’ or uncheck
its ‘Verify origin IP’ flag

This error can be encountered on the Test Script Execution screen after the request message has been
successfully matched to the active test execution for the user:

It can take place if either USER_KEY or ORG_KEY header was specified in the request and the active
test execution was successfully matched but the additional origin IP verification failed.

For added security, Touchstone verifies that the the actual IP address of the request matches the IP address
of your test system in Touchstone. You get the error above if they don’t.

You can do one of the following to get around this error:

126 Chapter 8. Client/Peer-to-Peer Testing

Touchstone Documentation, Release 6.2.1

a. Add the IP address indicated in the message above (10.0.75.1 for the case above) to the list of IP
addresses of your test system:

b. Uncheck this box on your test system.

It is recommended to do option (a). If you do option (b), then other users can configure their test setups with
your test system playing Origin and submit requests from their FHIR Clients. This will give the impression
to end-users that the request came from your test system when in fact it came from another FHIR Client. If
you don’t have such a concern (because you have marked your client test system as accessible/executable
only by ‘My Org’), then option (b) is more convenient as you don’t have to change the test system’s IP
Address in Touchstone every time the IP address of your FHIR Client changes.

No test execution was found with status ‘Waiting for Request’ for the user

This error can take place if the user submits a request but has not launched a peer-to-peer testscript execu-
tion.

You can launch the testscript execution and wait for it to reach Waiting for Request status before
submitting the request again. It is highly recommeded to follow the instructions on the waiting step of the

8.3. Exchanges Screen 127

Touchstone Documentation, Release 6.2.1

Test Script Execution screen as the URL port and other submission details could be different from what
you are submitting:

8.4 FAQ

1. When executing a client-side test script, I have submitted what the system asked me to but my operation execution
is still stuck on `Waiting for Request` You can visit the Exchanges My Org and Exchanges Unmatched screens
to look for an error message (in red) that would describe what happened. See Common Errors for some of the
errors.

2. When doing client-side testing, do I need to start all over if I submit the wrong USER_KEY accidently? It’s
best to click the Execute Again button on your Test Execution screen and start from the beginning. The target
system is no longer in the state that your operation execution expects it to be in. Multiple submissions of the
request message are still forwarded to the target system and processed. Resource ids and versions would change.
So it might seem like nothing happened (because your operation execution still says Waiting for Request),
behind the scenes message exchanges are taking place with the target system.

128 Chapter 8. Client/Peer-to-Peer Testing

/touchstone/userguide/html/client-testing/exchanges.html#common-errors

Touchstone Documentation, Release 6.2.1

3. Why does Touchstone not support restart from a certain point in the test script? It’s painful (especially with
client-side testing) to start from the beginning of the script. This is not a limitation in Touchstone. It’s the way
the test script specification was designed (see http://hl7.org/fhir/testing.html#execution). The Setup section is
executed only once per test script. The Setup section is what enables repeatable and reliable test results. It cleans
up the target system from previous resource updates/creates/etc. before launching the tests within the script. If
you were to restart from a certain point in the script and not the beginning, the target system will not be in the
state that the point you want to restart from expects it to be in. So you’ll most likely get failed assertions and
failed tests.

8.4. FAQ 129

http://hl7.org/fhir/testing.html#execution

Touchstone Documentation, Release 6.2.1

130 Chapter 8. Client/Peer-to-Peer Testing

CHAPTER

NINE

TESTSCRIPT AUTHORING

9.1 FHIR TestScript

Touchstone test executions are controlled by the specification FHIR TestScript resource. Here are some of the high-level
elements:

• Setup - Contains operations that seed the target system with the test data needed for the tests.

• Tests - Contains operations and assertions

– Operations - HTTP-based requests against the target system.

– Assertions - Verifications to ensure that the target system behaved as expected by the specification.

While TestScripts in Touchstone follow the FHIR TestScript, there are extra constraints enforced by Touchstone and
extra extensions allowed through the Touchstone IG. Examples of such are:

• Operation.Resource is required for any Instance or Type Level REST Interactions where the Resource Type cannot
be inferred by the source Fixture.

• Rules, Rulesets, and the asserts that use them are all extensions for R4 testScipts defined in the Touchstone IG.

There are many more elements in the FHIR TestScript. Please refer to Testing FHIR and TestScript for details on how
the TestScript works.

131

https://www.hl7.org/fhir/http.html
https://touchstone.aegis.net/touchstone/fhir/testing/history.html
http://build.fhir.org/testing.html
http://build.fhir.org/testscript.html

Touchstone Documentation, Release 6.2.1

9.2 Upload on UI

Organizations that are subscribed at the Starter level and above can upload testscripts to Touchstone using the web
interface. Org Reps within these organizations can decide which users within their organization can upload test scripts:

Folders (containing test scripts, fixtures, rules, etc.) can be uploaded as a zip file on the Test Definitions screen. The
folder will land under your organization name in the FHIRSandbox folder.

1. Click on the Upload link on the Test Definitions screen:

132 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

2. Browse to the zip file containing the test scripts and fixtures that you want to upload:

• Browse – Point this to the zip file that you want to upload. It should contain the test scripts and the referenced
fixtures, rules, etc.

• Parent Group – The destination of the zipped folder. There will be one option if this is the first time you’re
uploading or if you’re situated at the root of the hierarchy.

9.2. Upload on UI 133

Touchstone Documentation, Release 6.2.1

• Can be viewed by – If Me or My Organization is selected, then users outside your organization will not be
able to see the test group or execute the test scripts within it. If Me is selected, then even other users within your
organization will be unable to see the test group.

• Can be modified by – If Me or My Organization is selected, then users outside your organization cannot over-
write the uploaded test group. If Me is selected, then even other users within your organization will be unable to
overwrite the test group.

• Validator – This is the default Validator that the test scripts will be testing against. The Validators are listed
by what base FHIR Specification they depend on. All resources including the test scripts and fixtures within
this uploaded test group has to abide by the constraints imposed by the specification version. Additionally, the
workflow logic being tested by a test script will vary from one version to the next. For additional details, refer to
Validators.

• Includes HL7v2/HL7v3 – Check this box if the test scripts you are uploading are HL7v2 or HL7v3 test scripts.
You will be presented with another drop down to choose the V2 or V3 validator to be used during the execution
of the test scripts. The chosen validator for the main Validator option will be used for validation when the test
scripts are uploaded. More info can be found at HL7v2 Validation and HL7v3 Validation.

For users whose organizations are part of Org Groups, there is an additional option of My Org Groups offered in the
Can be viewed By and Can be modified By option list. If you chose e.g. Org Group A in Can be viewed by,
then only users of organizations that are part of Org Group A will be able to see the test group and execute test scripts
in that test group. If you chose e.g. Org Group A in Can be modified by, then those users will also be able to
modify the test group. For additional details, refer to Test Definition access.

Zip with one folder

• If the zip file contains one folder inside of it and that folder name matches the name of the zip file, then Touchstone
will not create a duplicate sub-folder. The zipped folder will land under the org name:

Notice that after the upload, there is only one Patient folder under Initech i.e. We don’t have
Patient/Patient under Initech:

134 Chapter 9. TestScript Authoring

/touchstone/userguide/html/multi-profile/validator-testing.html
https://touchstone.aegis.net/touchstone/fhir/testing-ig/guidance.html#hl7-v2-message-support
https://touchstone.aegis.net/touchstone/fhir/testing-ig/guidance.html#hl7-v3-message-support
/touchstone/userguide/html/org-groups/access.html#test-definition-access

Touchstone Documentation, Release 6.2.1

• If the zip file contains one folder inside of it and that folder name does not match the name of the zip file, then
Touchstone will use the zip file name as the destination folder and the contained folder becomes a sub-folder
under that destination folder:

Notice that after the upload, the destination folder is the same as the zip file name:

Zip with multiple folders

If the zip file contains multiple folders, then Touchstone will use the zip file name as the destination folder and the
contained folders become sub-folders under that destination folder:

• If the zip file is named Patient.zip, then destination folder will be Patient:

9.2. Upload on UI 135

Touchstone Documentation, Release 6.2.1

• If the zip file is named ThePatientTests.zip, then destination folder will be ThePatientTests:

Note: When uploading testscripts, two testscripts cannot have the same name but different file extensions
(.xml or .json). They must have unique names for upload.

136 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

9.3 TestScript Editor

The TestScript Editor is an Eclipse-based desktop development environment. It provides a comprehensive suite of
development tools for creating, managing and publishing FHIR TestScript resources. It is designed to simplify test
script development and accommodate a large number of users, ranging from beginners to experts.

The TestScript Editor can be used to:

• Upload Test Groups and TestScript resources to Touchstone.

• Upload Test Groups to and download them from Simplifier.

• Manage TestScript resources by integrating with Version Control systems such as SVN, GIT etc.

The TestScript Editor leverages the following built-in Eclipse editors:

• XML Editor (*.xml)

• JSON Editor (*.json)

• Groovy Editor (*.groovy)

• Text Editor (*.txt)

• Java Editor (*.java)

9.3.1 Download

You can download the TestScript Editor by going to Docs > Downloads and selecting the appropriate platform:

Once the download is complete, unzip the zip file to a directory of your choice.

9.3. TestScript Editor 137

http://build.fhir.org/testscript.html
/touchstone/userguide/html/downloads.html#downloads
/touchstone/userguide/html/downloads.html

Touchstone Documentation, Release 6.2.1

9.3.2 Install a JVM

Note:
• TestScript Editor is a Java-based application and it requires a Java runtime environment (JRE) in order to

run.

Regardless of your operating system, you will need to install Java virtual machine (JVM). You may either install a Java
Runtime Environment (JRE), or a Java Development Kit (JDK), depending on what you want to do with TestScript
Editor. A Java Development Kit (JDK) includes many useful extras for Java developers including the source code for
the standard Java libraries.

Current releases of TestScript Editor require Java 8, click this link below for detailed instructions to install JDK 8 or
JRE 8 on Microsoft Windows, Linux, and OS X computers.

• Instructions to Download & Install JDK or JRE

Set JAVA_HOME:
1. Microsoft Windows:

• Go to “Control Panel / System Properties / Advanced tab” and select “Environment Variables”.

• Set the JAVA_HOME variable value to the location of the JDK or JRE e.g. “C:\Program
Files\Java\jdk1.8.0_181”.

• Add “%JAVA_HOME%\bin” to the PATH variable and click ‘OK’ to save the changes.

• To verify, open command line and run ‘java -version’. This should display the details of the JDK or
JRE selected above.

2. Linux:
• To set JAVA_HOME in Linux for all users, we can use /etc/profile or /etc/environment (pre-

ferred).

• Open /etc/environment in any text editor and add:

JAVA_HOME=/path/to/java_installation

Note:
• Please note that /etc/environment is not a script, but a list of assignment expressions (that is why

export is not used). This file is read at the time of login.

• To set JAVA_HOME using /etc/profile, open the file and add:

export JAVA_HOME=/path/to/java_installation

• Run the source command to load the variable:

source /etc/profile

• Now we can check the value of the JAVA_HOME variable.

echo $JAVA_HOME

• The result should be the path to the JDK or JRE installation, for example:

/usr/lib/jvm/jdk1.8.0_181

3. Mac OS X:

138 Chapter 9. TestScript Authoring

https://docs.oracle.com/javase/8/docs/technotes/guides/install/install_overview.html

Touchstone Documentation, Release 6.2.1

• To set JAVA_HOME in Mac OS X for single user, we can use ~/.bash_profile

• Open ~/.bash_profile in any editor and add:

export JAVA_HOME=/path/to/java_installation

• Save and close the file.

• Open a Terminal and run the source command to apply the changes:

source ~/.bash_profile

• Now we can check the value of the JAVA_HOME variable:

echo $JAVA_HOME

• The result should be the path to the JDK/JRE installation, for example:

/Library/Java/JavaVirtualMachines/jdk1.8.0_181.jdk/Contents/Home

Note:
• To set JAVA_HOME globally for all users, the steps are the same as above, but the file /etc/profile

is used.

JAVA Info for .ini file:
You will need to point the IDE to the older Java JDK 8 in the TouchstoneIDE.ini file. Please check to see
where the JDK 8 built and ensure your path is correct for your machine. Your TouchstoneIDE.ini should
reflect what is provided below.

Microsoft Windows:
-startup

plugins/org.eclipse.equinox.launcher_1.4.0.v20161219-1356.jar

--launcher.library

plugins/org.eclipse.equinox.launcher.win32.win32.x86_64_1.1.551.
v20171108-1834

--launcher.appendVmargs

-vm

C:Program FilesJavajdk1.8.0_221bin

-vmargs

-Dosgi.requiredJavaVersion=1.8

--add-modules=ALL-SYSTEM

Mac OS X:
-startup

../Eclipse/plugins/org.eclipse.equinox.launcher_1.4.0v20161219-1356.jar

--launcher.library

../Eclipse/plugins/

org.eclipse.equinox.launcher.cocoa.macosx.x86_64_1.1.551.v20171108-1834

--launcher.appendVmargs

9.3. TestScript Editor 139

Touchstone Documentation, Release 6.2.1

-vm

/Library/Java/JavaVirtualMachines/jdk1.8.0_251.jdk/Contents/Home/bin

-vmargs

-Dosgi.requiredJavaVersion=1.8

--add-modules=ALL-SYSTEM

-XstartOnFirstThread

-Dorg.eclipse.swt.internal.carbon.smallFonts

9.3.3 Start TestScript Editor

To bring up the TestScript Editor, run/open the Touchstone IDE file in the unzipped directory. It will be Touchstone
IDE.exe on Windows, Touchstone IDE.app on Mac, and Touchstone IDE on Linux.

Feel free to create a shortcut to this file.

The first time, the editor is brought up, it will prompt you for the location of your workspace. You can select any
location. The workspace location can be different from the location of your TestScript resources.

Use of TestScript Editor requires Enterprise-Level subscription. You must use the same credentials you use to sign into
Touchstone web site:

140 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

9.3.4 Create TestScript Project

You can start by creating a simple project as follows:

1. From the menu bar, select File > New > Project...

2. In the New Project wizard, select General > Project and click Next:

9.3. TestScript Editor 141

Touchstone Documentation, Release 6.2.1

3. In the Project name field, type the name of your new project e.g. FHIRSandbox.

4. Leave the box checked to use the default location or uncheck the default location and select a new location for
your new project. Click Finish when you are done.

142 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

The navigation view will now contain the FHIRSandbox project you just created.

9.3. TestScript Editor 143

Touchstone Documentation, Release 6.2.1

9.3.5 Create a Test Group

Test Groups in Touchstone are represented by folders in TestScript Editor. You can create a new folder using the Project
Explorer view’s popup menu:

1. Activate the Project Explorer view and select the project FHIRSandbox (the first project we created in the Project
Explorer view). Right click on FHIRSandbox folder and select New > Folder.

2. In the Folder name field, type a unique name for your new folder, e.g. Patient:

3. Click Finish when you are done. The Project Explorer view will update to show your newly created folder:

144 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

4. Repeat the folder creation steps. This time, create Client Assigned Id under the Patient folder:

5. The Project Explorer view will update to show your newly created folder:

9.3. TestScript Editor 145

Touchstone Documentation, Release 6.2.1

9.3.6 Create a TestScript

You can create a TestScript by following the steps below:

1. Select the folder Client Assigned Id in one of the navigation views.

2. In the toolbar, activate the drop-down menu on the New Wizard button and select File:

3. Enter the file name including the extension e.g. Patient-client-id-json.xml:

146 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

The file extension is “.xml” indicating that the source will be written in XML format.

The file name has “-json” indicating that the TestScript will be used to call REST operations in JSON format.
You don’t have to follow this convention.

4. Click Finish when you are done.

5. The Workbench has an editor capable of editing XML files. The editor is automatically opened on the newly
created file:

6. Select the Source tab and copy into it the contents of the Patient test scripts. Current up-to-date scripts may be

9.3. TestScript Editor 147

Touchstone Documentation, Release 6.2.1

obtained from Test Definitions in Touchstone. You can download these example Patient test scripts and fixtures:
Example Patient Test

Notice that the editor tab has an asterisk (*) at the left of the filename. The asterisk indicates that the editor has unsaved
changes.

148 Chapter 9. TestScript Authoring

/touchstone/examples?name=Patient&redirectTo=/userguide/html/testscript-authoring/testscript-editor.html%23upload-to-touchstone

Touchstone Documentation, Release 6.2.1

7. In the Workbench window’s toolbar, click the Save button to save your work.

The Outline panel shows the high-level structure of the TestScript file:

9.3. TestScript Editor 149

Touchstone Documentation, Release 6.2.1

Note that a new file can also be created by using the context menu which you can get to by right-clicking the folder:

150 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

9.3.7 Code Completion

The TestScript editor provides pre-defined easy-to-use XML templates which increase reusability and speed up devel-
opment of test scripts.

To access the templates, open any XML file and enter CTRL + SPACE. This displays the predefined list of templates
that you can select for code completion:

You can use the provided templates, customize them, or create your own templates.

For example, you can work on a group of testscripts that should all contain a rule/ruleset element with a specific
definition. Create a template that contains the tags for that rule/ruleset, including the appropriate attributes and attribute
values for each tag. You can copy and paste the tags from a structured text editor into the template’s Pattern field. Then
select the name of the template from a content assist proposal list whenever you want to insert your custom rule/ruleset
into an XML file.

To create a new XML template, you can take the following steps:

1. Click Window > Preferences and select XML > XML Files > Templates.
2. Click New if you want to create a completely new template.

3. Supply a new template Name and Description.

4. Specify the Context for the template. This is the context in which the template is available in the proposal list
when content assist is requested.

5. Specify the Pattern for your template using the appropriate tags, attributes, or attribute values to be inserted by
content assist.

6. If you want to insert a variable, click the Insert Variable button and select the variable to be inserted. For example,
the date variable indicates the current date will be inserted.

9.3. TestScript Editor 151

Touchstone Documentation, Release 6.2.1

7. Click OK and then Apply to save your changes.

You can edit, remove, import, or export a template by using the same preferences page. If you have modified a default
template, you can restore it to its default value. You can also restore a removed template if you have not exited from
the workbench since it was removed.

If you have a template that you do not want to remove but you no longer want it to appear in the content assist list, clear
its check box in the table on the Templates preferences page.

9.3.8 Touchstone Integration

Note:
• You need to be connected to internet

• You need Starter or higher subscription level to upload test scripts to Touchstone.

9.3.8.1 Upload to Touchstone

1. Upload to Touchstone can be initiated in one of the following ways:

1.1. Toolbar upload button - In the toolbar, click the upload icon button. The file or folder selected in the
Project Explorer view will be uploaded.

1.2. Popup menu - In Project Explorer, right-click a folder or file and click on Upload to Touchstone:

152 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

1.3. Touchstone menu - Click on Touchstone > Upload to Touchstone on the menu bar. The file or folder
selected in the Project Explorer view will be uploaded.

1.4. Editor popup menu - In the editor, right-click the content pane and click on Upload to Touchstone:

9.3. TestScript Editor 153

Touchstone Documentation, Release 6.2.1

Warning: You should upload the root folder first before attempting to upload sub-folders and files.

2. Notice the absence of Patient folder in FHIRSandbox in Touchstone UI:

154 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

3. Select the Patient folder and click on the Upload icon:

4. Select the View/Modify options and click the Upload button to submit or Cancel to cancel the request.

9.3. TestScript Editor 155

Touchstone Documentation, Release 6.2.1

The Can be viewed by and Can be modified by options are explained in Upload Destination and Test Def-
inition access.

5. If the validator you selected has any additional validators linked to it, you will be prompted with another window
where you can optionally choose to select zero or more validators to upload along with. If Upload is selected,
the upload will run in the background:

6. You will get an error from the server stating that all dependent fixtures were not included as part of the upload.
Fixtures referred to by this test script should already exist in Touchstone or should be included as part of the
upload.

156 Chapter 9. TestScript Authoring

/touchstone/userguide/html/testscript-authoring/ui-upload.html#upload-destination
/touchstone/userguide/html/org-groups/access.html#test-definition-access
/touchstone/userguide/html/org-groups/access.html#test-definition-access

Touchstone Documentation, Release 6.2.1

7. Current up-to-date scripts may be obtained from Test Definitions in Touchstone. You can download these example
Patient test scripts and fixtures: Example Patient Test

8. This time when we upload the Patient folder, the upload succeeds:

9.3. TestScript Editor 157

/touchstone/examples?name=Patient&redirectTo=/userguide/html/testscript-authoring/testscript-editor.html%23upload-to-touchstone

Touchstone Documentation, Release 6.2.1

9. Notice that the test group Patient lands under the name of the organization the user belongs to:

10. Now that the root folder (Patient) has been uploaded to Touchstone, you can make changes and create/upload
individual folders within any level of the hierarchy:

158 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

11. You can also upload changes to individual test scripts and create new test scripts:

9.3. TestScript Editor 159

Touchstone Documentation, Release 6.2.1

12. You can do the same with individual fixtures:

160 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

13. You can see the history of completed upload jobs in progress view:

9.3. TestScript Editor 161

Touchstone Documentation, Release 6.2.1

9.3.9 Simplifier Integration

9.3.9.1 Simplifier Preferences

To upload or download files you need to configure the Simplifier user credentials in preferences page Windows ->
Preferences -> Simplifier

Enter your Simplifier user credentials and click Apply and Close button to save the preferences. This will be used to
authenticate and authorize the requests in Simplifier.

162 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

9.3.9.2 Create New Project

Start by creating a simple project as follows:

1. From the menu bar, select File > New > Project...

2. In the New Project wizard, select General > Project then click Next.
3. In the Project name field, enter the Simplifier Project key as the name of your new project e.g. FHIR3-0-1-

Connectath. The Simplifier project key can be found in Simplifier account page Settings > Project URL

9.3. TestScript Editor 163

Touchstone Documentation, Release 6.2.1

4. Leave the box checked to use the default location for your new project. Click Finish when you are done.

164 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

In the navigation view, you will see the FHIR3-0-1-Connectath project we just created.

Note:
• You need to be connected to internet

• You need to have a Simplifier account with active projects.

• You need to configure the Simplifier user credentials in the editor before uploading or downloading files from
Simplifier.

9.3. TestScript Editor 165

Touchstone Documentation, Release 6.2.1

9.3.9.3 Download from Simplifier

1. In the Project Explorer view select the new project FHIR3-0-1-Connectath > Right Click > Simplifier
> Download from Simplifier. If authentication is successful the files will be downloaded from Simplifier:

2. Refresh project FHIR3-0-1-Connectath and you should be able to see the downloaded files

166 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

9.3.9.4 Upload to Simplifier

1. In the Project Explorer view select the new project FHIR3-0-1-Connectath > Right Click > Simplifier
> Upload to Simplifier. The confirmation dialog window is displayed:

9.3. TestScript Editor 167

Touchstone Documentation, Release 6.2.1

2. Select Ok to submit or Cancel to cancel the upload process.

3. If authentication is successful the files are uploaded to Simplifier project.

4. You can verify the uploads on the Log tab in Simplifier as shown below.

168 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

9.3.10 Updating TestScript Editor

You can update the TestScript Editor as follows:

1. Check for Updates: (Recommended)

To check to see whether there are updates for the TestScript Editor in your system (requires Internet access):

1. Click command link Help > Check for Updates or by clicking the Updates Available notifi-
cation shown below. The notification is displayed when new updates are available on startup and
reminds the user every 4 hours if not updated.

2. This will contact the Web sites defined in your Available Software Sites preferences to look for up-
grades. If upgrades are available, they will be presented in the Available Updates wizard as shown
below.

9.3. TestScript Editor 169

Touchstone Documentation, Release 6.2.1

3. Check the updates that you wish to install. Click Next to see the details of the updates available as
shown below.

4. Click Next to review the license for selected items. If the terms of all these licenses are acceptable,

170 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

check “I accept the terms in the license agreements and click Finish to install the updates.

5. Since TestScript Editor updates are not digitally signed the security warning dialog will be displayed.
Click Install Anyway to continue the installation.

6. Once the updates are installed successfully, you will be prompted to restart the workbench. Click
‘Restart Now’ to restart the Workbench for the changes to take effect.

2. Using the Install New Software Wizard The Install New Software Wizard allows you to add new or update soft-
ware to your installation. To install new or update an existing software:

9.3. TestScript Editor 171

Touchstone Documentation, Release 6.2.1

1. Click Help > Install New Software.... This wizard shows you the items that are available for in-
stallation.

2. Select the TestScript Editor update site using the Works With combo at the top of the page. By default the
items in the site are grouped by category and the latest version of each item is shown.

3. As you browse the available software, you can check the items that you wish to install.

4. When you have finished making your selections, click Next to install the checked items. If the items you
are installing require other software items in order to operate, those requirements will be included in your
request. A checkbox at the bottom of this page controls whether all software sites will contacted when
looking for requirements, or only the site shown in the Work With combo box.

5. Once you click Next, the wizard will validate your selections against your installed software, and may
display the ‘Install Remediation page’ if the items selected are already installed. Select Update my instal-
lation to be compatible with the items to be installed and click Next.

172 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

6. If all of the requirements are available and there are no other installation conflicts, clicking Next will show
the Install Details page. The items to be installed will be listed. Expanding each item will show what
additional items will be required to complete the install. You will see an estimated size of the installation
at the bottom of the page.

7. If the selected items have license agreements to be reviewed, you must click Next. Carefully review the
license agreements for the items you wish to install. If the terms of all these licenses are acceptable, check
“I accept the terms in the license agreements.” Do not proceed to download the features if the license terms
are not acceptable.

9.3. TestScript Editor 173

Touchstone Documentation, Release 6.2.1

8. If the license agreements are acceptable, click Finish. This will begin the download and installation of the new software.

1. Since TestScript Editor updates are not digitally signed the security warning dialog will be dis-
played. Click Install Anyway to continue the installation.

9. Once the updates are installed successfully, you will be prompted to restart the workbench. Click ‘Restart
Now’ to restart the Workbench for the changes to take effect.

174 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

9.3.11 References

Eclipse Workbench Documentation

XML Editor Documentation

SVN Plugin Documentation

GIT Plugin Documentation

9.4 Best Practices

9.4.1 Version Control

Although Touchstone does detect changes to uploaded test scripts and its dependenct resources, the versioning in
Touchstone is rudimentary. You should not rely on Touchstone as the sole repository for your test scripts.

It is highly recommended to manage your test scripts in a proper Version Control system (e.g. Git, Subversion,
TFVC, etc.) outside of Touchstone. These tools are specifically engineered to manage versioning, conflicts, branching,
concurrent commits, etc.

In the event that your test group gets corrupted in Toucshtone through concurrent uploads by different users, you could
re-upload the test group using the right version in your Version Control system.

9.4.2 Location

It is recommended to store the fixtures and rules for your test scripts in a separate folder and call the folder “_references”.
This will make it easier to tell apart these definitions from test scripts when browsing.

9.4. Best Practices 175

http://help.eclipse.org/oxygen/nav/0
http://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.wst.xmleditor.doc.user%2Ftopics%2FcworkXML.html
https://www.eclipse.org/subversive/documentation/preferences/pref_svn.php
https://www.eclipse.org/egit/documentation/

Touchstone Documentation, Release 6.2.1

9.4.3 Paths to resources

For resources that your test scripts are depending on and that are specific to the test scripts in the test group you’re
uploading, it is highly recommended to use relative paths to reference those resources. Doing so will allow you to
change the location of your test groups much more easily.

If you used absolute paths, then you’d have to go through all your test scripts and change the paths of the referenced
fixtures. That can be time-consuming and error prone.

In the test script snippet below where a fixture is defined, we’re using a relative path:

If you’re defining resources that are going to be used across many test groups (especially test groups shared among
different Org Group members), it would be better to define the resources in a separate test group and use absolute paths
to refer to those resources.

In the test script snippet below where a rule is defined, we’re using an abolute path. The rule is used across many test
groups in Touchstone.

9.5 Exclusions

By default, Touchstone will treat uploaded files with “.json”, “.xml”, “.groovy”, “.sch”, and “.xslt” extensions as test
definitions.

• JSON and XML test definitions are parsed during upload and are expected to be in proper format or the upload
will fail.

• Files with “.groovy”, “.sch”, and “.xslt” extensions are treated as rule definitions and are expected to contain
certain content in its headers or the upload will fail.

• Uploaded test definitions that contain FHIR resources will be validated periodically using the FHIR Validation
Engine and will be flagged for validation errors.

All these restrictions would prevent end users from:

• Using invalid JSON and XML in their fixtures for negative testing.

• Storing Schematron and XSLT files alongside their test definitions for schema-validation and transformation
purposes.

• Temporarily excluding test definitions from validation by a validation engine.

• etc.

176 Chapter 9. TestScript Authoring

https://www.hl7.org/fhir/validation.html#jar
https://www.hl7.org/fhir/validation.html#jar

Touchstone Documentation, Release 6.2.1

9.5.1 Props Location

Touchstone provides the ability to exclude folders and files from upload, parsing, and validations via exclusions in
groupProps.json. This file must reside at the root of the main test group. For example, if the main test group that’s
being uploaded is FHIR3-0-1-Basic, then groupProps.json file must reside at FHIR3-0-1-Basic:

If the file is incorrectly located one-level deeper (e.g. at FHIR3-0-1-Basic/D-H), then attempting to upload the test
group will produce the following error:

9.5.2 Props format

Regular Expressions are supported in the exclusions. There are four types of exclusions:

1. excludeFromUpload -> Completely prevents test definitions from ending up in Touchstone.

2. excludeFromParsing -> Test definitions are uploaded to Touchstone but they’re not parsed or validated.

3. excludeFromValidation -> Test definitions are uploaded to Touchstone and are parsed but they’re not periodi-
cally validated using external Validaiton Engine.

4. excludeFromConformance -> Test definitions are uploaded to Touchstone and are parsed but they’re excluded
from getting included in conformance evaluations.

• Test definitions that are specified in excludeFromUpload do not need to be specified in excludeFromParsing
and excludeFromValidation as they’ll be excluded from upload completely.

• Test definitions that are specified in excludeFromParsing do not need to be specified in excludeFromValidation
as they’ll neither be parsed nor validated.

Warning: Minimize the number of entries in excludeFromUpload, excludeFromParsing, and exclude-
FromValidation as each entry is evaluated separately during upload. Upload could take long if there are too
many entries. It’s better to agree upon a naming convention in your organization and use a regular expression
that matches the agreed-upon convention.

9.5. Exclusions 177

https://en.wikipedia.org/wiki/Regular_expression

Touchstone Documentation, Release 6.2.1

We will cover various scenarios via examples next.

9.5.3 Upload Exclusions

Upload exclusions are specified using the excludeFromUpload key in groupProps.json. Values can be specified using
regular expressions. Matching folders and files will be filtered out from the upload and will not end up in Touchstone.

To exclude the Device test group from getting uploaded to Touchstone:

{
"excludeFromUpload": [

".*/FHIR3-0-1-Basic/D-H/Device/.*"
]

}

After the FHIR3-0-1-Basic test group is uploaded, the Device sub group will not be there in Touchstone:

Note: After the groupProps.json file ends up in Touchstone, you can upload sub-groups and files individ-
ually as usual i.e. You do not have to upload the main test group (FHIR3-0-1-Basic in this case) every time.
Touchstone will enforce the exclusions based on the last version of groupProps.json in the system for the

178 Chapter 9. TestScript Authoring

https://en.wikipedia.org/wiki/Regular_expression

Touchstone Documentation, Release 6.2.1

main test group. If you need to update the exclusions, you can re-upload the main test group (FHIR3-0-1-
Basic in this case) which includes the updated groupProps.json. You can alternatively upload the updated
groupProps.json file alone for the new exclusions to take effect.

To exclude test groups that start with “Device” from getting uploaded to Touchstone:

{
"excludeFromUpload": [

".*/FHIR3-0-1-Basic/D-H/Device.*"
]

}

After the FHIR3-0-1-Basic test group is uploaded, the “Device”, “DeviceComponent”, and “DeviceMetric” sub groups
will not be there in Touchstone:

To exclude “D-H” sub group from getting uploaded to Touchstone:

9.5. Exclusions 179

Touchstone Documentation, Release 6.2.1

{
"excludeFromUpload": [

".*/D-H/.*"
]

}

After the FHIR3-0-1-Basic test group is uploaded, the “D-H” sub group will not be there in Touchstone:

To exclude “.sch” and “.xslt” files in Devices sub group from getting uploaded to Touchstone:

180 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

{
"excludeFromUpload": [

(continues on next page)

9.5. Exclusions 181

Touchstone Documentation, Release 6.2.1

(continued from previous page)

".*/Device/.*\\.sch",
".*/Device/.*\\.xslt"

]
}

or

{
"excludeFromUpload": [

".*/Device/.*\\.(sch|xslt)"
]

}

The second one above is better as it involves fewer evaluations during upload and thereby slightly better performance.

Note: Certain characters must be escaped when included in a json string. The regex backslash must be
escaped using another backslash, hence the double backslash in the example.

After the FHIR3-0-1-Basic test group is uploaded, the “.sch” and “.xslt” files in Device sub group will not be there in
Touchstone but those in List sub group will be:

To exclude all “.sch” and “.xslt” files from getting uploaded to Touchstone:

182 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

{
"excludeFromUpload": [

(continues on next page)

9.5. Exclusions 183

Touchstone Documentation, Release 6.2.1

(continued from previous page)

".*\\.sch",
".*\\.xslt"

]
}

or

{
"excludeFromUpload": [

".*\\.(sch|xslt)"
]

}

The second one above is better as it involves fewer evaluations during upload and thereby slightly better performance.

After the FHIR3-0-1-Basic test group is uploaded, the “.sch” and “.xslt” files will not be anywhere under FHIR3-0-1-
Basic in Touchstone:

9.5.4 Parsing Exclusions

Parsing exclusions are specified using the excludeFromParsing key in groupProps.json. Values can be specified using
regular expressions. Matching folders and files will still end up in Touchstone but will be filtered out from parsing and
periodic validations.

If your folders contain Groovy, Schematron and XSLT files, for example, and you want Touchstone to not treat them
as rule definitions, then you can specify a regular expression that matches those files in excludeFromParsing.

You can do the same with JSON and XML fixtures that are not even proper JSON or XML and you want to use them
for negative testing.

To exclude “.sch” and “.xslt” files in all sub groups from getting parsed during upload (and treated as rule definitions):

184 Chapter 9. TestScript Authoring

https://en.wikipedia.org/wiki/Regular_expression

Touchstone Documentation, Release 6.2.1

{
"excludeFromParsing": [

(continues on next page)

9.5. Exclusions 185

Touchstone Documentation, Release 6.2.1

(continued from previous page)

".*\\.sch",
".*\\.xslt"

]
}

After the FHIR3-0-1-Basic test group is uploaded, the “.sch” and “.xslt” files do get included in the upload but they
will not be parsed and treated as rule definitions:

To exclude certain files from getting parsed and checked for valid JSON or XML:

186 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

{
"excludeFromParsing": [

".*/FHIR3-0-1-Basic/D-H/Device/_reference/bad_format.xml"
]

}

After the FHIR3-0-1-Basic test group is uploaded, the “bad_format.xml” file does get included in the upload but it will
not be parsed and checked for proper XML. It will also avoid periodic validations

9.5. Exclusions 187

Touchstone Documentation, Release 6.2.1

Warning: Minimize the number of entries in excludeFromParsing as each entry is evaluated sepa-
rately during upload. Upload could take long if there are too many entries. It’s better to agree upon
a naming convention in your organization and use a regular expression that matches the agreed-upon
convention. For example, all such invalid formats could end in “_improper_format.json” or “_im-
proper_format.xml”. Then you could exclude all these files from parsing by specifying a single regular
expression that matches all those files:

To exclude all files that end in ‘_improper_format’ from getting parsed and format-checked:

188 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

{
"excludeFromParsing": [

".*_improper_format\\.(json|xml)"
]

}

9.5.5 Validation Exclusions

Validation exclusions are specified using the excludeFromValidation key in groupProps.json. Values can be specified
using regular expressions. Matching folders and files will still end up in Touchstone but will be filtered out from
periodic validations. JSON and XML files will be parsed though during upload and will be expected to contain proper
JSON or XML.

This feature is useful if you want to avoid test definitions from getting marked for validation failures by external Vali-
dation Engine.

To exclude all test definitions in the Device test group from getting periodically validated:

9.5. Exclusions 189

https://en.wikipedia.org/wiki/Regular_expression

Touchstone Documentation, Release 6.2.1

{
"excludeFromValidation": [

".*/FHIR3-0-1-Basic/D-H/Device/.*"
]

}

9.5.6 Conformance Exclusions

Conformance exclusions are specified using the excludeFromConformance key in groupProps.json. Values can be
specified using regular expressions. Matching folders and files will still end up in Touchstone but will be filtered out
from getting included in Conformance results. JSON and XML files will be parsed though during upload and will be
expected to contain proper JSON or XML.

This feature is useful if you’re testing a new operation in your test scripts and Touchstone is unable to map it to its
known operation list or if you simply don’t want certain test scripts from getting included in conformance results (but
still want it as part of the test groups).

Note that changes to the content of such test scripts will still increment the Conformance Suite version if they’re part
of the test group referenced by the suite.

To exclude all test definitions in the Device test group from getting included in Conformance results:

190 Chapter 9. TestScript Authoring

https://en.wikipedia.org/wiki/Regular_expression

Touchstone Documentation, Release 6.2.1

{
"excludeFromConformance": [

".*/FHIR3-0-1-Basic/D-H/Device/.*"
]

}

9.6 Test Groups

Test Groups can be changed and deleted on the UI.

9.6.1 Access

Access rights to test groups and its descendant test definitions can be specified during upload:

9.6. Test Groups 191

Touchstone Documentation, Release 6.2.1

They can also be changed without having to re-upload the test group:

1. Select the test group

2. Click on Edit

192 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

3. Change the access and click on Save Changes

Note: These attributes will propagate to all its descendant sub groups and test definitions.

For details on controling access to test groups at the Org Group level, please refer to Test Definition Access.

9.6. Test Groups 193

/touchstone/userguide/html/org-groups/access.html#test-definition-access

Touchstone Documentation, Release 6.2.1

9.6.2 Deactivate

Test groups can be deactivated so they don’t show up in the Test Definitions tree when user has selected “Show Active
Only”:

Note: It is recommended to use access rights to restrict access to test definitions that are under develop-
ment and not the Active flag. If a test group is under active development and you do not want users to use
the test scripts just yet, you can restrict View Access to “Me” or “My Organization”, for example.

Deactivation is meant for test groups that were in use for a while but are no longer actively supported.

To deactivate a test group:

1. Select the test group

194 Chapter 9. TestScript Authoring

/touchstone/userguide/html/testscript-authoring/test-groups.html#access

Touchstone Documentation, Release 6.2.1

2. Click on Edit

3. Uncheck Active Flag.

9.6. Test Groups 195

Touchstone Documentation, Release 6.2.1

4. Note that the AllergyIntolerance test group is no longer visible on the UI.

196 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

9.6.3 Deletion

Warning: This will permanently delete the test group along with all sub groups, test scripts, fixtures,
etc.

Users that have write access to a test group can delete it on the UI:

1. Select the test group

2. Click on Delete

3. Confirm deletion.

9.6. Test Groups 197

Touchstone Documentation, Release 6.2.1

9.7 Placeholders

The Touchstone Placeholders are special predefined TestScript variables and may be used where standard TestScript
variables are allowed: static fixtures, dynamic fixtures, operation.params, operation.requestHeader.value, operation.url,
and assert.value element values.

These Touchstone Placeholders fall into two (2) categories

• Predefined User Unique Data Values

• Functions for Dynamic Data Generation

9.7.1 Predefined User Unique Data Values

The predefined user unique data value placeholders are strings of varying lengths from 1 to 20 characters. They are
defined of three (3) types:

• Character only; for example, ${C6}

• Digits only; for example, ${D9}

• Characters + Digits; for example, ${CD14}

Users may view their assigned placeholder variable values in Touchstone via the user name menu item ${} My Place-
holders.

Guaranteed Value Uniqueness - All predefined user unique data value placeholder values with a character length of 6
or more are guaranteed to be unique.

9.7.2 Functions for Dynamic Data Generation

There are three (3) available functional constructs for dynamic data generation:

• CURRENTDATE and CURRENTDATETIME

• DATE and DATETIME (relative to dynamic variable)

• UUID, UUID-ST, UUID-NODASH and UUID-ST-NODASH

198 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

9.7.2.1 CURRENTDATE[TIME]

These function placeholder variables provide support for date and datetime values based on the current date (today) and
current datetime (now). Optional comma separated offset arguments apply date and time arithmetic providing relative
date and time generated values.

Syntax/Format ${<placeholder name>[, <datetime portion code>, <offset value>]} Where,

• <placeholder name> is CURRENTDATE or CURRENTDATETIME

• <datetime portion code> is the character indicating what portion of the date or datetime value will be offset.
Valid characters are derived from the following Java SimpleDateFormat pattern string “yyMMddHHmmss”

• <offset value> is the signed integer value used to adjust the date or time

• <datetime portion code>, <offset value> may be repeated for more complex arithmetic

Examples

Placeholder Example Description
${CURRENTDATE} The current date (today)
${CURRENTDATETIME} The current date and time (today)
${CURRENTDATE,d,-10} The date 10 days before the current date
${CURRENTDATETIME,d,10} The date and time 10 days after the current date and time
${CURRENTDATE,y,-1} The date 1 year before the current date
${CURRENTDATETIME,H,10} The date and time 10 hours after the current date and time

9.7.2.2 DATE[TIME]

These function placeholder variables provide support for date and datetime values based on a dynamic variable user
input date or datetime value. Optional comma separated offset arguments apply date and time arithmetic providing
relative date and time generated values.

Syntax/Format ${<placeholder name>, <relative value>[, <datetime portion code>, <offset value>]} Where,

• <placeholder name> is DATE or DATETIME

• <relative value> is a dynamic variable defined in the current TestScript that holds the relative date or datetime value

– The dynamic variable must be defined in TestScript without path/expression; its value will be entered
by the user during Test Setup

• <datetime portion code> is the character indicating what portion of the date or datetime value will be offset.
Valid characters are derived from the following Java SimpleDateFormat pattern string “yyMMddHHmmss”

• <offset value> is the signed integer value used to adjust the date or time

• <datetime portion code>, <offset value> may be repeated for more complex arithmetic

Examples

Placeholder Example Description
${DATE, medicationDate} The value of the user entered medicationDate will be used as-is
${DATETIME, medicationDateTime} The value of the user entered medicationDateTime will be used as-is
${DATE, medicationDate, d, -10} The value of the user entered medicationDate minus 10 days will be

used
${DATETIME, medicationDateTime,
M, -1}

The value of the user entered medicationDateTime minus 1 month will
be used

9.7. Placeholders 199

Touchstone Documentation, Release 6.2.1

9.7.2.3 UUID[-ST|-NODASH|-ST-NODASH]

These function placeholder variables provide support for generation of UUID values with predefined formatting.

Syntax/Format ${<placeholder name>} Where,

• <placeholder name> is UUID, UUID-ST, UUID-NODASH or UUID-ST-NODASH

Examples

Placeholder
Example

Description

${UUID} A single generated UUID string value without the standard prefix; e.g., ‘3ed6eb79-fc68-443a-
996f-08167f5bdef0’

${UUID-ST} A single generated UUID string value including the standard prefix; e.g., ‘urn:uuid:
3ed6eb79-fc68-443a-996f-08167f5bdef0’

${UUID-
NODASH}

A single generated UUID string value without the standard prefix and dash characters removed;
e.g., ‘3ed6eb79fc68443a996f08167f5bdef0’

${UUID-ST-
NODASH}

A single generated UUID string value including the standard prefix and dash characters removed;
e.g., ‘urn:uuid:3ed6eb79fc68443a996f08167f5bdef0’

9.7.3 Usage

The Touchstone Placeholder, both predefined values and functions, are typically defined in static fixtures used as an
operation request payload; for example, create or update. Touchstone’s TestScript Execution interface provides both a
Raw and Resolved view of static fixtures where the pre and post test execution contents can be examined.

Raw Example - Patient.name, Patient.birthDate

<name>
<use value="official"/>
<family value="Smith${C7}"/>
<given value="John${C6}"/>
<birthDate value="${CURRENTDATE,d,-7}"/>

</name>

Resolved Example - Patient.name, Patient.birthDate

<name>
<use value="official"/>
<family value="SmithMqCERSQ"/>
<given value="JohnXRCnsc"/>
<birthDate value="2021-01-27"/>

</name>

200 Chapter 9. TestScript Authoring

urn:uuid:3ed6eb79-fc68-443a-996f-08167f5bdef0
urn:uuid:3ed6eb79-fc68-443a-996f-08167f5bdef0
urn:uuid:3ed6eb79fc68443a996f08167f5bdef0

Touchstone Documentation, Release 6.2.1

9.8 Rule Authoring

9.8.1 Rule Basics

The TestScript’s rule element can be used to reference complex validation logic that goes beyond what the basic
TestScript assert element supports. As such, rules are recommended only when TestScript assert cannot be used in
its basic form.

Touchstone Rules-Engine supports rules written in the following languages:

• Groovy

• XSLT

• Schematron

Support for additional languages may be added in the future. Unless you plan on executing test scripts against a test
system that only supports XML, it is highly recommended to write rules in Groovy as XSLT and Schematron rules can
only be evaluated against requests and responses whose content is in XML while Groovy supports JSON as well.

The examples in this guide will be in Groovy. For more information on how to write rules in XSLT and Schematron,
please refer to XSLT and Schematron.

9.8.1.1 Definition

We will start with a simple test script that has no rules and gradually add rules. You can download all of the examples
used in this section from here.

Open an instance of TestScript Editor and import the project in the example “no-rules” directory within the zip file:

9.8. Rule Authoring 201

http://build.fhir.org/testscript-definitions.html#TestScript.rule
http://build.fhir.org/testscript-definitions.html#TestScript.setup.action.assert
/touchstone/userguide/html/testscript-authoring/rule-authoring/schematron.html
/touchstone/examples?name=Rule-Authoring&redirectTo=/userguide/html/testscript-authoring/rule-authoring/basics.html%23create-rule
/touchstone/userguide/html/testscript-authoring/testscript-editor.html

Touchstone Documentation, Release 6.2.1

Upload the Patient folder to Touchstone:

202 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

Execute the newly uploaded script successfully in Touchstone. You can use WildFHIR 3.3.0 server as the target server.

The first operation in RegisterNewPatient test of Patient-server-id-json.xml test script is a create operation followed
by a basic assertion:

<action>
<operation>
<type>
<system value="http://hl7.org/fhir/testscript-operation-codes"/>
<code value="create"/>

</type>
<resource value="Patient"/>
<description value="Create patient with server assigned resource id."/>
<accept value="json"/>
<contentType value="json"/>
<encodeRequestUrl value="true"/>
<sourceId value="patient-create"/>

</operation>
</action>
<action>
<assert>
<description value="Confirm that the returned HTTP status is 200(OK) or␣

→˓201(Created)."/>
(continues on next page)

9.8. Rule Authoring 203

Touchstone Documentation, Release 6.2.1

(continued from previous page)

<direction value="response"/>
<operator value="in"/>
<responseCode value="200,201"/>
<warningOnly value="false"/>

</assert>
</action>

According to the FHIR specification, if a server supports versioning then it should return an ETag header with the
versionId in the create operation response. Although the basic TestScript assertion supports verification of arbitrary
response headers, we will create a rule to perform this verification for demonstration purposes.

Create a folder called ‘rule’ under the _reference folder:

This folder will host all the rule definitions that are specific to the Patient test group.

Create a new file called ‘AssertHeader.groovy’ under this folder:

204 Chapter 9. TestScript Authoring

http://build.fhir.org/http.html#create

Touchstone Documentation, Release 6.2.1

Keep the rule contents empty for now.

9.8.1.2 Declaration

To use a rule in a test script assert, you must first declare the Touchstone IG in the test script’s metadata:

<meta>
<profile value="http://touchstone.aegis.net/touchstone/fhir/testing/

→˓StructureDefinition/testscript"/>
</meta>

.. warning:: If this metadata is not in your testscript Touchstone cannot evaluate any␣
→˓rule/ruleset asserts.

Then you can declare the assertETag rule before the url definition in Patient-server-id-json.xml test script as
follows:

<extension url="http://touchstone.aegis.net/touchstone/fhir/testing/StructureDefinition/
→˓testscript-rule">
<extension url="ruleId">

<valueId value="assertETag"/>
</extension>
<extension url="path">

<valueString value="../_reference/rule/AssertHeader.groovy"/>
</extension>

</extension>

9.8.1.3 Assertion

We can now use the rule in rule assertions. Add the following rule assertion to the RegisterNewPatient test in
Patient-server-id-json.xml test script:

<assert>
<extension url="http://touchstone.aegis.net/touchstone/fhir/testing/

→˓StructureDefinition/testscript-assert-rule">
<extension url="ruleId">

<valueId value="assertETag"/>
</extension>

</extension>
<warningOnly value="false" />

</assert>

Notice we’re giving a relative path to the actual rule definition. The rule id assertETag has to match the one used in
the rule assertion. Defining the rule at the top of the test script allows us to reuse this rule in many tests within this test
script.

9.8. Rule Authoring 205

https://touchstone.aegis.net/touchstone/fhir/testing/history.html

Touchstone Documentation, Release 6.2.1

9.8.1.4 Summary and Description

Let’s now add some content to the AssertHeader.groovy rule.

The summary and description lines communicate the intent of the rule assertion to the end-user. They are declared in
Groovy comments at the top of the rule definition as follows:

/*
rule.summary=Response ETag header cannot be empty
rule.description=Validates the 'ETag' header in the response
*/

Go ahead and upload the Patient folder to Touchstone:

206 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

Execute the Patient-server-id-json test script on the UI:

Here’s how the summary and description get displayed on the TestScript Execution screen:

9.8. Rule Authoring 207

Touchstone Documentation, Release 6.2.1

The rule did not have any logic. So the rule assertion passed.

Add the following assert to the rule content to make it fail unconditionally:

An error is raised with the message specified after the colon (i.e. “Could not find ‘ETag’ header in response”) if the
assertion fails. The “assert false” call is an unconditional failure; so we must get an error with this message.

We only changed the groovy rule. Upload the groovy rule to Touchstone:

208 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

Re-execute the same test execution on Touchstone UI:

Notice the correlation between the error message in the rule and what’s displayed on the UI:

9.8. Rule Authoring 209

Touchstone Documentation, Release 6.2.1

Change the assert in the groovy rule to evaluate the ETag header in the response correctly:

assert response.header('ETag').isNotEmpty(): "Could not find 'ETag' header in response"

We are using the response binding that represents the HTTP response from the target server to grab the actual ETag
header received from the server. Bindings are covered in the next section.

Upload the groovy rule to Touchstone and re-execute the test execution. This time, the assertion passes because the
server does indeed return an ETag in the response header:

210 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

While it’s perfectly valid to use the Groovy assert and construct the error messages yourself (e.g. “Could not find
‘ETag’ header in response”), the Touchstone Rules API provides helper methods that relieves rule authors from con-
structing these error messages and thereby keeps them consistent across many rule definitions. These helper methods
are offered on many of the binding variables and come in the form of “assertXXXX” e.g. assertHeaderEquals,
assertStatusCodeEquals, assertContentTypeEquals, etc. For full listing, please refer to Rules API Reference.

Let’s change the assertion in AssertHeader.groovy to the following:

response.assertHeaderNotEmpty('ETag')

Upload the rule and re-execute. The results should be same as before.

9.8.1.5 Bindings

We used the response binding to make a header assertion in the previous section. There are many other bindings that
the Rules-Engine provides access to within a Groovy rule template. They are touched upon below and are covered in
more detail in Rules API Reference.

9.8. Rule Authoring 211

/touchstone/userguide/html/testscript-authoring/rule-authoring/reference/index.html
/touchstone/userguide/html/testscript-authoring/rule-authoring/reference/index.html
/touchstone/userguide/html/testscript-authoring/rule-authoring/reference/index.html

Touchstone Documentation, Release 6.2.1

Binding Alternative bindings Description
exchange

The exchange taking place between
a client (Touchstone or Test system)
and
a server Test System in Touchstone

request exchange.request

The request message sent by a
client (either Touchstone or another
Test System in Touchstone).

requests

Map of
Testscript.operation.requestId to
request.
If operation.requestId were
specified as ‘create-request’, then
the request could
be fetched within the rule using
requests.get(‘create-request’).
See Multiple Assertions.

response exchange.response

The response received from the
server Test System.

responses

Map of
Testscript.operation.responseId to
request.
If operation.responseId were
specified as ‘create-response’, then
the response could
be fetched within the rule using
responses.get(‘create-response’).
See Multiple Assertions.

requestHeaders

request.headers The headers of the request.

responseHeaders

response.headers The headers of the response.

requestBody

request.body The payload of the request.

responseBody

response.body The payload of the response.

responseCode

statusCode,

response.responseCode
response.statusCode

e.g. 200. See RFC Status Codes
and Touchstone
ResponseCode rule assertions.

requestResource request.resource

e.g. ‘Patient’ if the request message
payload is present and
the resource within it is a Patient
resource. See FHIR Resource List.

responseResource response.resource

e.g. ‘Bundle’ if the response
message payload is present and the
FHIR resource within it is a Bundle
resource.
See Touchstone Resource rule
assertions.

clientCapStmt

originCapStmt,
originConfStmt,
clientConfStmt

The Capability Statement of the
client in the message exchange. See
Touchstone Capability rule
assertions.

serverCapStmt

destCapStmt,
destConfStmt,
serverConfStmt

The Capability Statement of the
server in the message exchange.
See
Touchstone Capability rule
assertions.

direction

‘REQUEST’ if the rule assertion is
being performed on the request
message. ‘RESPONSE’ if the rule
assertion is being performed on
the response message. This is
useful if the same rule template is
being
used for both request and response
and you need to execute slightly
different logic for the two.

targetMessage

This will be ‘request’ (binding
variable above) if assert direction is
‘request’
and it will be ‘response’ (binding
variable above) if assert direction is
‘response’.
This is useful if the same rule
template is being used for both
request
and response and you need to
execute the same logic against
whatever
the message is. See Operator
parameter for an example.

param

Parameter(s) passed from the
TestScript to the rule template.

ruleOutputs

Map of Rule Output Id to Rule
Output (document or string). See
Rule Outputs.

212 Chapter 9. TestScript Authoring

/touchstone/userguide/html/testscript-authoring/rule-authoring/multiple-assertions.html
/touchstone/userguide/html/testscript-authoring/rule-authoring/multiple-assertions.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
/touchstone/userguide/html/testscript-authoring/rule-authoring/reference/responseCode.html
http://build.fhir.org/resourcelist.html
http://build.fhir.org/resourcelist.html
/touchstone/userguide/html/testscript-authoring/rule-authoring/reference/resource.html
/touchstone/userguide/html/testscript-authoring/rule-authoring/reference/resource.html
http://build.fhir.org/capabilitystatement.html
/touchstone/userguide/html/testscript-authoring/rule-authoring/reference/capability.html
/touchstone/userguide/html/testscript-authoring/rule-authoring/reference/capability.html
http://build.fhir.org/capabilitystatement.html
/touchstone/userguide/html/testscript-authoring/rule-authoring/reference/capability.html
/touchstone/userguide/html/testscript-authoring/rule-authoring/reference/capability.html
http://build.fhir.org/testscript-definitions.html#TestScript.setup.action.assert.direction
http://build.fhir.org/testscript-definitions.html#TestScript.setup.action.assert.direction
/touchstone/userguide/html/testscript-authoring/rule-authoring/parameters.html#operator-parameter
/touchstone/userguide/html/testscript-authoring/rule-authoring/parameters.html#operator-parameter
/touchstone/userguide/html/testscript-authoring/rule-authoring/rule-outputs.html

Touchstone Documentation, Release 6.2.1

9.8.2 Parameters

We checked for the presence of ‘ETag’ header earlier in the AssertHeader.groovy rule. If we wanted to also check for
the presence of ‘LastModified’ header, we could create another rule definition and have the following assert in it:

response.assertHeaderNotEmpty('LastModified')

The code is the same as we used earlier. Only the header value is different. Creating a separate rule definition for each
value that you expect in an exchange would lead to an explosive number of rule definitions in the system with lots of
rule logic duplication. This is hard to maintain.

It is better to have a single rule definition (AssertHeader.groovy) and pass the header as a parameter.

9.8.2.1 Definition

Parameters are defined in the comments section of the Groovy rule definition after the description:

/*
rule.summary=Response '${param.header}' header cannot be empty
rule.description=Validates the '${param.header}' header in the response
rule.param.header.required=true

*/

response.assertHeaderNotEmpty('${param.header}')

We’re defining the ‘header’ parameter and making it required. The system will check what rule parameters are required
by a rule definition and will ensure that the test script has supplied them before evaluating the rule. We’re also using
the parameter in the summary and description as ‘${param.header}’ so the summary and description on the TestScript
Execution screen is based on the parameter supplied.

Replace the contents of AssertHeader.groovy with the code above, and re-upload and re-execute.

You should get the following error:

That’s because we haven’t supplied the ‘header’ parameter from the test script yet. We’ll do that next.

9.8. Rule Authoring 213

Touchstone Documentation, Release 6.2.1

9.8.2.2 Supplying params

According to the specification, we could supply the parameter in two ways in the test script:

1. At the top of the test script within the rule declaration:

2. Within the rule-assertion in a test:

You can use option 1 or 2 or both. Option 2 is useful when you need the parameter values in rule-assertion to override
the ones supplied within the rule declaration. Let’s use the first option i.e. declare it within the rule declaration:

<extension url="http://touchstone.aegis.net/touchstone/fhir/testing/StructureDefinition/
→˓testscript-rule">
<extension url="ruleId">

<valueId value="assertETag"/>
</extension>
<extension url="path">

<valueString value="../_reference/rule/AssertHeader.groovy"/>
</extension>
<extension url="param">

<extension url="name">
<valueString value="header"/>

</extension>
<extension url="value">

<valueString value="ETag"/>
</extension>

</extension>
</extension>

Upload the test script and re-execute it. You should get the following result:

214 Chapter 9. TestScript Authoring

http://build.fhir.org/testscript.html

Touchstone Documentation, Release 6.2.1

We can now easily add the rule assertion for ‘Last-Modified’ header without modifying AssertHeader.groovy rule
definition.

Add the following rule declaration to the test script after assertETag:

<extension url="http://touchstone.aegis.net/touchstone/fhir/testing/StructureDefinition/
→˓testscript-rule">
<extension url="ruleId">

<valueId value="assertLastModified"/>
</extension>
<extension url="path">

<valueString value="../_reference/rule/AssertHeader.groovy"/>
</extension>
<extension url="param">

<extension url="name">
<valueString value="header"/>

</extension>
<extension url="value">

<valueString value="Last-Modified"/>
</extension>

</extension>
</extension>

Add the following rule-asseriton to the test script after all the assertions:

<assert>
<extension url="http://touchstone.aegis.net/touchstone/fhir/testing/

→˓StructureDefinition/testscript-assert-rule">
<extension url="ruleId">

<valueId value="assertLastModified"/>
</extension>

</extension>
<warningOnly value="false" />

</assert>

Re-upload and re-execute. You should get the results below. Notice how the summaries and descriptions are customized
for each parameter.

That’s because we used parameters in the summary and description:

9.8. Rule Authoring 215

Touchstone Documentation, Release 6.2.1

9.8.2.3 Operator parameter

You can make the AssertHeader rule even more generic by passing the operator that the header value needs to be
evaluated with.

Replace the contents of AssertHeader.groovy with the following:

/*
rule.summary=${label.target} '${param.header}' header ${param.headerOperator}.
rule.description=Confirm that '${param.header}' header ${param.headerOperator}.
rule.param.header.required=true
rule.param.headerExpectedValue.required=false
rule.param.headerOperator.required=true

*/

targetMessage.assertHeader(param.header, param.headerExpectedValue, param.
→˓headerOperator);

See Bindings for explanation on what targetMessage means.

Re-upload and re-execute. You should get the following error:

Notice that there are two new parameters that can be supplied from the test script. One is required and the other optional:

Replace the rule references in Patient-server-id-json.xml test script with the changes below. Notice the addition
of headerOperator parameter to both rule declarations:

<extension url="http://touchstone.aegis.net/touchstone/fhir/testing/StructureDefinition/
→˓testscript-rule">
<extension url="ruleId">

<valueId value="assertETag"/>
(continues on next page)

216 Chapter 9. TestScript Authoring

/touchstone/userguide/html/testscript-authoring/rule-authoring/basics.html#bindings

Touchstone Documentation, Release 6.2.1

(continued from previous page)

</extension>
<extension url="path">

<valueString value="../_reference/rule/AssertHeader.groovy"/>
</extension>
<extension url="param">

<extension url="name">
<valueString value="header"/>

</extension>
<extension url="value">

<valueString value="ETag"/>
</extension>

</extension>
<extension url="param">

<extension url="name">
<valueString value="headerOperator"/>

</extension>
<extension url="value">

<valueString value="notEmpty"/>
</extension>

</extension>
</extension>
<extension url="http://touchstone.aegis.net/touchstone/fhir/testing/StructureDefinition/
→˓testscript-rule">
<extension url="ruleId">

<valueId value="assertLastModified"/>
</extension>
<extension url="path">

<valueString value="../_reference/rule/AssertHeader.groovy"/>
</extension>
<extension url="param">

<extension url="name">
<valueString value="header"/>

</extension>
<extension url="value">

<valueString value="Last-Modified"/>
</extension>

</extension>
<extension url="param">

<extension url="name">
<valueString value="headerOperator"/>

</extension>
<extension url="value">

<valueString value="notEmpty"/>
</extension>

</extension>
</extension>

Re-upload and re-execute. You should see the results below:

9.8. Rule Authoring 217

Touchstone Documentation, Release 6.2.1

You can refer to Header Rule API for details on header assertions.

9.8.2.4 Expected parameter

Let’s replace the existing assertion for response code in Patient-server-id-json.xml test script with an assertion
rule. This is not recommended practice as it’s best to resort to rule-assertions when existing TestScript asserts do not
meet your needs. We’re doing this for demonstration purposes.

Create a new rule definition called AssertResponseCode.groovy and copy the following contents into it:

/*
rule.summary=Response status code ${param.responseCodeOperator} ${param.responseCode}.
rule.description=Confirm that response status code ${param.responseCodeOperator} $

→˓{param.responseCode}.
rule.param.responseCode.required=true
rule.param.responseCodeOperator.required=true

*/

targetMessage.assertResponseCode(param.responseCode, param.responseCodeOperator)

The responseCode and responseCodeOperator parameters above are required and have to be supplied by the test
script. The responseCode is the expected value in the response.

Add the following rule declaration before the assertETag rule declaration:

<extension url="http://touchstone.aegis.net/touchstone/fhir/testing/StructureDefinition/
→˓testscript-rule">
<extension url="ruleId">

<valueId value="assertResponseCode"/>
</extension>
<extension url="path">

<valueString value="../_reference/rule/AssertResponseCode.groovy"/>
</extension>

</extension>

Replace the existing rule assert for response code with the following:

<assert>
<extension url="http://touchstone.aegis.net/touchstone/fhir/testing/

→˓StructureDefinition/testscript-assert-rule">
<extension url="ruleId">

<valueId value="assertResponseCode"/>
</extension>
<extension url="param">

<extension url="name">
<valueString value="responseCode"/>

</extension>
(continues on next page)

218 Chapter 9. TestScript Authoring

/touchstone/userguide/html/testscript-authoring/rule-authoring/reference/header.html#response-code

Touchstone Documentation, Release 6.2.1

(continued from previous page)

<extension url="value">
<valueString value="200,201"/>

</extension>
</extension>
<extension url="param">

<extension url="name">
<valueString value="responseCodeOperator"/>

</extension>
<extension url="value">

<valueString value="in"/>
</extension>

</extension>
</extension>
<warningOnly value="false" />

</assert>

Notice that this time, we’re supplying the parameters with the rule assert instead of the rule declaration.

Re-upload and re-execute. You should see the following results:

You can refer to Response Code Rule API for details on response code assertions.

9.8.3 Ruleset

Sometimes, you may want to apply a bunch of rules as a group to a request or response message.

For example, the ETag and Last-Modified rules developed in the previous section would make sense to be applied as
a group to a response message after it has been determined that the response status was “201 (Created)”. Rather than
putting all the logic in one rule, you can split each rule into a separate rule template and then group the rule templates
in a RuleSet. The advantage of doing so is that you get separate assertions in the TestScript Execution results. That’s
easier to understand for user analyzing test results and is more maintainable for the rule author.

9.8. Rule Authoring 219

/touchstone/userguide/html/testscript-authoring/rule-authoring/reference/responseCode.html#response-code

Touchstone Documentation, Release 6.2.1

9.8.3.1 Definition

You can download all of the examples used in this section from here.

Open an instance of TestScript Editor and import the project in the example “rules” directory within the zip file:

Create a new directory called ruleset and a new file called “RuleSet-Versioning.xml” in it:

220 Chapter 9. TestScript Authoring

/touchstone/examples?name=Rule-Authoring&redirectTo=/userguide/html/testscript-authoring/rule-authoring/ruleset.html%23create
/touchstone/userguide/html/testscript-authoring/testscript-editor.html

Touchstone Documentation, Release 6.2.1

9.8. Rule Authoring 221

Touchstone Documentation, Release 6.2.1

Copy the following contents into the newly created RuleSet-VersioningHeaders.xml:

<RuleSet>
<description value="Contains common rules for validating versioning-related headers."␣

→˓/>
<rule id="assertResponseCode">
<required value="false" />
<reference value="../rule/AssertResponseCode.groovy"/>

</rule>
<rule id="assertETag">
<required value="true" />
<reference value="../rule/AssertHeader.groovy"/>

</rule>
<rule id="assertLastModified">
<required value="false" />
<reference value="../rule/AssertHeader.groovy"/>

</rule>
</RuleSet>

The RuleSet contains three different rules. Two of them are marked required and one is marked optional. The optional

222 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

rules in the RuleSet can be opted out in test scripts. If the TestScript.ruleset and the assert.ruleset elements in the test
script do not specify the optional rule, then the rule is not evaluated against the message. On the other hand, if neither
the TestScript.ruleset nor the TestScript.test.action.assert.ruleset specifies a required rule (by the id used in the RuleSet
definition), then the system will raise an error and refuse to process the rule evaluation.

The rules within a RuleSet definition can be referenced using relative paths (as is the case above) or via absolute paths.
Using relative paths makes it easier for you to move test groups (and their contained resources) around and as such is
the recommended practice if the rules and ruleset are applicable to the containing test group only. If they can be used
across test groups, then it’s recommended to use absolute paths.

Each rule within a RuleSet will be evaluated as a separate TestScript assertion during test execution as required by the
FHIR spec.

The description element in a RuleSet is mandatory.

9.8.3.2 Declaration

To use a RuleSet in a TestScript assert, it must first be declared as a TestScript.ruleset.

At the top of the Patient-server-id-json.xml test script, let’s replace the previous rule declarations with a ruleset
declaration to use RuleSet-VersioningHeaders.xml that was defined earlier:

<extension url="http://touchstone.aegis.net/touchstone/fhir/testing/StructureDefinition/
→˓testscript-ruleset">
<extension url="rulesetId">

<valueId value="ruleset-versioning-headers"/>
</extension>
<extension url="path">

<valueString value="../_reference/ruleset/RuleSet-VersioningHeaders.xml"/>
</extension>
<extension url="rule">

<extension url="ruleId">
<valueId value="assertResponseCode"/>

</extension>
<extension url="param">

<extension url="name">
<valueString value="responseCode"/>

</extension>
<extension url="value">

<valueString value="200,201"/>
</extension>

</extension>
<extension url="param">

<extension url="name">
<valueString value="responseCodeOperator"/>

</extension>
<extension url="value">

<valueString value="in"/>
</extension>

</extension>
</extension>
<extension url="rule">

<extension url="ruleId">
<valueId value="assertETag"/>

</extension>
(continues on next page)

9.8. Rule Authoring 223

http://build.fhir.org/testscript-definitions.html#TestScript.setup.action.assert.ruleset

Touchstone Documentation, Release 6.2.1

(continued from previous page)

<extension url="param">
<extension url="name">

<valueString value="header"/>
</extension>
<extension url="value">

<valueString value="ETag"/>
</extension>

</extension>
<extension url="param">

<extension url="name">
<valueString value="headerOperator"/>

</extension>
<extension url="value">

<valueString value="notEmpty"/>
</extension>

</extension>
</extension>
<extension url="rule">

<extension url="ruleId">
<valueId value="assertLastModified"/>

</extension>
<extension url="param">

<extension url="name">
<valueString value="header"/>

</extension>
<extension url="value">

<valueString value="Last-Modified"/>
</extension>

</extension>
<extension url="param">

<extension url="name">
<valueString value="headerOperator"/>

</extension>
<extension url="value">

<valueString value="notEmpty"/>
</extension>

</extension>
</extension>

</extension>

Notice that rule declarations have been replaced with the ruleset declaration in the test script:

224 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

9.8. Rule Authoring 225

Touchstone Documentation, Release 6.2.1

9.8.3.3 Assertion

Now that we have declared the ruleset, we can use it in assertions. Replace the rule-assertions with the following
ruleset-assertion in Patient-server-id-json.xml test script:

<assert>
<extension url="http://touchstone.aegis.net/touchstone/fhir/testing/

→˓StructureDefinition/testscript-assert-ruleset">
<extension url="rulesetId">
<valueId value="ruleset-versioning-headers"/>

</extension>
</extension>
<description value="Complex ruleset assertion to validate expected versioning HTTP␣

→˓Headers."/>
<direction value="response"/>
<warningOnly value="false"/>

</assert>

Re-upload and re-execute. You should see the following results:

The assertResponseCode, assertETag, and assertLastModified rules were marked as required rules by the RuleSet-
VersioningHeaders.xml definition (as covered in a previous section earlier). If these rules were not specified at the
TestScript.ruleset, then they would have been expected to be specified in the assert.ruleset. Otherwise, the system
would raise an error.

We have supplied parameters for all the rules within the RuleSet declaration at the top of the test script. These can be
overwritten in individual TestScript assertions.

9.8.3.4 Overriding rules

Replace the ruleset-assertion with the following in Patient-server-id-json.xml test script:

<assert>
<extension url="http://touchstone.aegis.net/touchstone/fhir/testing/

→˓StructureDefinition/testscript-assert-ruleset">
<extension url="rulesetId">
<valueId value="ruleset-versioning-headers"/>

</extension>
<extension url="rule">
<extension url="ruleId">

<valueId value="assertResponseCode"/>
</extension>
<extension url="param">

<extension url="name">
<valueString value="responseCode"/>

(continues on next page)

226 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

(continued from previous page)

</extension>
<extension url="value">

<valueString value="201"/>
</extension>

</extension>
<extension url="param">

<extension url="name">
<valueString value="responseCodeOperator"/>

</extension>
<extension url="value">

<valueString value="equals"/>
</extension>

</extension>
</extension>

</extension>
<description value="Complex ruleset assertion to validate expected versioning HTTP␣

→˓Headers."/>
<direction value="response"/>
<warningOnly value="false"/>

</assert>

Notice that we’re overriding the responseCode and responseCodeOperator parameters in the ruleset-declaration
at the top of the test script with different values in this ruleset-assertion.

Re-upload and re-execute. Notice the change in the expectations and the summary/description:

9.8.4 Rules API

This section documents the APIs available to rule authors that allow them to both make assertions and also to extract
data from the headers and payload of request and response messages. Many of the assertions are also availabe in FHIR
TestScript. The low-level APIs though can be combined to form more complicated rule logic than can be accompished
using TestScript assertions without rules.

9.8.4.1 Body

The following assertions can be performed on both request and response variables offered by the Touchstone Rules-
Engine.

They would validate the presence or absence of payload in the request or response.

• assertBodyNotEmpty()
– Asserts that the request or response contains a payload

– Examples:

9.8. Rule Authoring 227

Touchstone Documentation, Release 6.2.1

request.assertBodyNotEmpty()

response.assertBodyNotEmpty()

– Equivalent to these:

assertBodyNotEmpty(request)

assertBodyNotEmpty(response)

// operator can be passed as parameters from test script.
assertBody("notEmpty", request)

// operator can be passed as parameters from test script.
assertBody("notEmpty", response)

assert request.body != null: "Expected message body but did not find it␣
→˓in request"

assert response.body != null: "Expected message body but did not find it␣
→˓in response"

assert request.body: "Expected message body but did not find it in␣
→˓request"

assert response.body: "Expected message body but did not find it in␣
→˓response"

• assertBodyEmpty()
– Asserts that the request or response does not contain a payload

– Examples:

request.assertBodyEmpty()

response.assertBodyEmpty()

– Equivalent to these:

assertBodyEmpty(request)

assertBodyEmpty(response)

// operator can be passed as parameters from test script.
assertBody("empty", request)

// operator can be passed as parameters from test script.
assertBody("empty", response)

228 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

assert request.body==null: "Found message body when it was not expected␣
→˓in request"

assert response.body==null: "Found message body when it was not expected␣
→˓in response"

assert !request.body: "Found message body when it was not expected in␣
→˓request"

assert !response.body: "Found message body when it was not expected in␣
→˓response"

9.8.4.2 Capability / Support

The assertions below can be performed on both clientCapStmt and serverCapStmt variables offered by the Touch-
stone Rules-Engine. These assertions confirm the presence or absence of a capability in the test system. They rely on
evaluation of FHIRPath, XPath, or JSONPath expressions against the contents of the capability statement. They can be
useful in ensuring that the test system supports a certain capability before other assertions are made on test execution
results.

The clientCapStmt variable represents the capability statement of the client/origin test system and will only be set by
the Rules Engine in Peer-to-Peer interactions and if the statement has been downloaded or uploaded into Touchstone.
In other interactions, Touchstone serves as the client.

The serverCapStmt variable represents the capability statement of the server/destination test system and will be set
by the Rules Engine if the statement has been downloaded or uploaded into Touchstone.

See Capability Statement and Test System List for details on how to download or upload a Capability Statement into
Touchstone.

The advantage of assertSupportViaFhirPath assertions over assertSupportViaNonFhirPath, assertSupportViaXPath,
and assertSupportViaJsonPath assertions is that only one FHIRPath expression is needed and will work regardless of
the content type (XML or JSON) of the capability statement that was downloaded or uploaded into Touchstone. The
disadvantage is that it will run significantly slower than XPath and JSONPath evaluation.

Warning: Avoid using assertSupportViaXPath, and assertSupportViaJsonPath assertions as they make assump-
tions about the content type of the capability statement downloaded or uploaded into Touchstone. Use either as-
sertSupportViaFhirPath or assertSupportViaNonFhirPath assertions instead as they’ll work with either content
type.

• assertSupportViaFhirPath(fhirpath, expectedConfPathValue, operator, pathLabel)
– Asserts that the provided fhirpath evaluates to the provided expectedConfPathValue using the provided

operator against the capability statement represented by the provided capStmt. The pathLabel is a short
label/description that will be used for informational messages in place of the long fhirpath to describe the
capability.

– Example:

serverCapStmt.assertSupportViaFhirPath(
"rest.where(mode.value='server').resource.where(type.value='Patient').

→˓versioning",
"versioned,versioned-update", "in", "Patient versioning")

9.8. Rule Authoring 229

http://hl7.org/fhirpath/index.html
https://www.w3.org/TR/xpath-30
http://goessner.net/articles/JsonPath/
/touchstone/userguide/html/client-testing/index.html
/touchstone/userguide/html/test-systems/statement.html
/touchstone/userguide/html/test-systems/list.html

Touchstone Documentation, Release 6.2.1

– Equivalent to these:

assertSupportViaFhirPath(
"rest.where(mode.value='server').resource.where(type.value='Patient').

→˓versioning",
"versioned,versioned-update", "in", "Patient versioning",␣

→˓serverCapStmt)

boolean supports = serverCapStmt.supportsViaFhirPath(
"rest.where(mode.value='server').resource.where(type.value='Patient

→˓').versioning",
"versioned,versioned-update", "in", "Patient versioning")

assert supports: "Expected Patient versioning to be supported by server␣
→˓capability statement"

boolean supports = supportsViaFhirPath(
"rest.where(mode.value='server').resource.where(type.value='Patient

→˓').versioning",
"versioned,versioned-update", "in", "Patient versioning",␣

→˓serverCapStmt)

assert supports: "Expected Patient versioning to be supported by server␣
→˓capability statement"

def versioning = serverCapStmt.fhirPathValue(
"rest.where(mode.value='server').resource.where(type.value='Patient

→˓').versioning")

assert versioning in ["versioned","versioned-update"]: "Expected Patient␣
→˓versioning to be

supported by server capability statement"

• assertSupportViaNonFhirPath(xPath, jsonPath, expectedConfPathValue, operator, pathLabel)
– Asserts that the provided xPath or jsonPath evaluates to the provided expectedConfPathValue using the

provided operator against the capability statement represented by the provided capStmt. The pathLabel is
a short label/description that will be used for informational messages in place of the long xPath or jsonPath
to describe the capability.

If the capability statement downloaded or uploaded into Touchstone is in XML, then the provided xPath
expression is used. And if the statement is in JSON, then the provided jsonPath expression is used.

– Example:

serverCapStmt.assertSupportViaNonFhirPath(
"rest[mode/@value='server']/resource[type/@value='Patient']/versioning

→˓",
"versioned,versioned-update", "in", "Patient versioning")

– Equivalent to these:

assertSupportViaNonFhirPath(
"rest[mode/@value='server']/resource[type/@value='Patient']/versioning

→˓",
(continues on next page)

230 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

(continued from previous page)

".rest[?(@.mode=='server')].resource[?(@.type=='Patient')].versioning"
"versioned,versioned-update", "in", "Patient versioning",␣

→˓serverCapStmt)

boolean supports = serverCapStmt.supportsViaNonFhirPath(
"rest[mode/@value='server']/resource[type/@value='Patient']/versioning

→˓",
".rest[?(@.mode=='server')].resource[?(@.type=='Patient')].versioning"
"versioned,versioned-update", "in", "Patient versioning")

assert supports: "Expected Patient versioning to be supported by server␣
→˓capability statement"

boolean supports = supportsViaNonFhirPath(
"rest[mode/@value='server']/resource[type/@value='Patient']/versioning

→˓",
".rest[?(@.mode=='server')].resource[?(@.type=='Patient')].versioning"
"versioned,versioned-update", "in", "Patient versioning",␣

→˓serverCapStmt)

assert supports: "Expected Patient versioning to be supported by server␣
→˓capability statement"

def versioning = serverCapStmt.nonFhirPathValue(
"rest[mode/@value='server']/resource[type/@value='Patient']/versioning

→˓",
".rest[?(@.mode=='server')].resource[?(@.type=='Patient')].versioning

→˓")

assert versioning in ["versioned", "versioned-update"]: "Expected␣
→˓Patient versioning to be

supported by server capability statement"

• assertSupportViaXPath(xpath, expectedConfPathValue, operator, pathLabel)
– Asserts that the provided xpath evaluates to the provided expectedConfPathValue using the provided op-

erator against the capability statement represented by the provided capStmt. The pathLabel is a short
label/description that will be used for informational messages in place of the long xpath to describe the
capability.

– Example:

serverCapStmt.assertSupportViaXPath(
"rest[mode/@value='server']/resource[type/@value='Patient']/versioning

→˓",
"versioned,versioned-update", "in", "Patient versioning")

– Equivalent to these:

assertSupportViaXPath(
"rest[mode/@value='server']/resource[type/@value='Patient']/versioning

→˓",
"versioned,versioned-update", "in", "Patient versioning",␣

→˓serverCapStmt) (continues on next page)

9.8. Rule Authoring 231

Touchstone Documentation, Release 6.2.1

(continued from previous page)

boolean supports = serverCapStmt.supportsViaXPath(
"rest[mode/@value='server']/resource[type/@value='Patient']/versioning

→˓",
"versioned,versioned-update", "in", "Patient versioning")

assert supports: "Expected Patient versioning to be supported by server␣
→˓capability statement"

boolean supports = supportsViaXPath(
"rest[mode/@value='server']/resource[type/@value='Patient']/versioning

→˓",
"versioned,versioned-update", "in", "Patient versioning",␣

→˓serverCapStmt)

assert supports: "Expected Patient versioning to be supported by server␣
→˓capability statement"

def versioning = serverCapStmt.xPathValue(
"rest[mode/@value='server']/resource[type/@value='Patient']/

→˓versioning")

assert isIn("versioned, versioned-update", versioning): "Expected␣
→˓Patient versioning to be

supported by server capability statement"

• assertSupportViaJsonPath(jsonPath, expectedConfPathValue, operator, pathLabel)
– Asserts that the provided jsonPath evaluates to the provided expectedConfPathValue using the provided

operator against the capability statement represented by the provided capStmt. The pathLabel is a short
label/description that will be used for informational messages in place of the long jsonPath to describe the
capability.

– Example:

serverCapStmt.assertSupportViaJsonPath(
".rest[?(@.mode=='server')].resource[?(@.type=='Patient')].versioning

→˓",
"versioned,versioned-update", "in", "Patient versioning")

– Equivalent to these:

assertSupportViaJsonPath(
".rest[?(@.mode=='server')].resource[?(@.type=='Patient')].versioning

→˓",
"versioned,versioned-update", "in", "Patient versioning",␣

→˓serverCapStmt)

boolean supports = serverCapStmt.supportsViaJsonPath(
".rest[?(@.mode=='server')].resource[?(@.type=='Patient')].versioning

→˓",
"versioned,versioned-update", "in", "Patient versioning")

(continues on next page)

232 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

(continued from previous page)

assert supports: "Expected Patient versioning to be supported by server␣
→˓capability statement"

boolean supports = supportsViaJsonPath(
".rest[?(@.mode=='server')].resource[?(@.type=='Patient')].versioning

→˓",
"versioned,versioned-update", "in", "Patient versioning",␣

→˓serverCapStmt)

assert supports: "Expected Patient versioning to be supported by server␣
→˓capability statement"

def versioning = serverCapStmt.jsonPathValue(
".rest[?(@.mode=='server')].resource[?(@.type=='Patient')].

→˓versioning")

assert isIn("versioned, versioned-update", versioning): "Expected␣
→˓Patient versioning to be

supported by server capability statement"

9.8.4.3 Content-Type

The following assertions can be performed on both request and response variables offered by the Touchstone Rules-
Engine.

They would validate the Content-Type header in the request or response.

• assertContentTypeContains(expectedValue)
– Asserts that the header ‘Content-Type’ contains the provided value

– Example:

response.assertContentTypeContains("xml")

– Equivalent to these:

assertContentTypeContains("xml", response)

// expectedValue and operator can be passed as parameters from test␣
→˓script.
assertContentType("xml", "contains", request)

assert response.header("Content-Type").contains("json"): "The actual
value \""+response.header('Content-Type')?.value +"\" did not contain

the expected value \"json\" for 'Content-Type' header in response."

Notice that the raw value of the ‘Content-Type’ header can be grabbed using:

response.header('Content-Type')?.value

• assertContentTypeNotContains(expectedValue)

9.8. Rule Authoring 233

Touchstone Documentation, Release 6.2.1

– Asserts that the header ‘Content-Type’ does not contain the provided value

– Example:

response.assertContentTypeNotContains("xml")

– Equivalent to these:

assertContentTypeNotContains("xml", response)

// expectedValue and operator can be passed as parameters from test␣
→˓script.
assertContentType("xml", "notContains", request)

assert response.header("Content-Type").notContains("xml"): "The actual
value \""+response.header('Content-Type')?.value +"\" contained the

expected value \"xml\" for 'Content-Type' header with operator
'notContains' in response."

• assertContentTypeEquals(expectedValue)
– Asserts that the value of header ‘Content-Type’ matches the provided value

– Example:

response.assertContentTypeEquals("application/fhir+json;charset=UTF-8")

– Equivalent to these:

assertContentTypeEquals("application/fhir+json;charset=UTF-8", response)

// expectedValue and operator can be passed as parameters from test␣
→˓script.
assertContentType("application/fhir+json;charset=UTF-8", "equals",␣
→˓request)

assert response.header("Content-Type").equals("application/fhir+json;
→˓charset=UTF-8"): "The

actual value \""+response.header('Content-Type')?.value +"\" did not␣
→˓match the

expected value \"application/fhir+json;charset=UTF-8\" for 'Content-
→˓Type' header in response"

• assertContentTypeNotEquals(expectedValue)
– Asserts that the value of header ‘Content-Type’ does not match the provided value

– Example:

response.assertContentTypeNotEquals("application/fhir+xml")

– Equivalent to these:

assertContentTypeNotEquals("application/fhir+xml", response)

234 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

// expectedValue and operator can be passed as parameters from test␣
→˓script.
assertContentType("application/fhir+xml", "notEquals", request)

assert response.header("Content-Type").notEquals("application/fhir+xml
→˓"): "The actual

value \""+response.header('Content-Type')?.value +"\" matched the␣
→˓expected value

\"application/fhir+xml\" for 'Content-Type' header with operator
→˓'notEquals'

in response."

9.8.4.4 Header

The following assertions can be performed on both request and response variables offered by the Touchstone Rules-
Engine.

They would validate the specified header in the request or response.

• assertHeaderContains(headerName, expectedValue)
– Asserts that the provided header headerName contains the provided expectedValue.

– Example:

request.assertHeaderContains("Accept","xml")

response.assertHeaderContains("Content-Type","xml")

– Equivalent to these:

assertHeaderContains("Accept", "xml", request)

assertHeaderContains("Content-Type", "xml", response)

// header, expectedValue, and operator can be passed as parameters from␣
→˓test script.
assertHeader("Accept", "xml", "contains", request)

// header, expectedValue, and operator can be passed as parameters from␣
→˓test script.
assertHeader("Content-Type", "xml", "contains", response)

assert request.header('Accept').contains('xml'): "The actual value '"+
request.header('Accept')?.value+"' did not contain the expected

value 'xml' for 'Accept' in request"

assert response.header('Content-Type').contains('xml'): "The actual␣
→˓value '"+

request.header('Content-Type')?.value+"' did not contain the expected␣
→˓value

'xml' for 'Content-Type' in response"

9.8. Rule Authoring 235

Touchstone Documentation, Release 6.2.1

assert contains('xml', request.header('Accept').value): "The actual␣
→˓value '"+

request.header('Accept')?.value+"' did not contain the expected
value 'xml' for 'Accept' in request"

assert contains('xml', response.header('Content-Type').value): "The␣
→˓actual value '"+

request.header('Content-Type')?.value+"' did not contain the expected␣
→˓value

'xml' for 'Content-Type' in response"

• assertHeaderNotContains(headerName, expectedValue)
– Asserts that the provided header headerName does not contain the provided expectedValue.

– Example:

response.assertHeaderNotContains("Content-Type","xml")

– Equivalent to these:

assertHeaderNotContains("Content-Type", "xml", response)

// header, expectedValue, and operator can be passed as parameters from␣
→˓test script.
assertHeader("Content-Type", "xml", "notContains", response)

assert response.header('Content-Type').notContains('xml'): "The actual␣
→˓value '"+
request.header('Content-Type')?.value+"' contained the expected value
→˓'xml'

for 'Content-Type' in response"

assert notContains('xml', response.header('Content-Type').value): "The␣
→˓actual value '"+
request.header('Content-Type')?.value+"' contained the expected value
→˓'xml'

for 'Content-Type' in response"

• assertHeaderEmpty(headerName)
– Asserts that the provided header headerName is absent or empty.

– Example:

response.assertHeaderEmpty("Content-Type")

– Equivalent to these:

assertHeaderEmpty("Content-Type", response)

// header and operator can be passed as parameters from test script.
assertHeader("Content-Type", "empty", response)

236 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

assert response.header('Content-Type').empty(): "Found 'Content-Type'
header when it was not expected in response"

assert empty(response.header('Content-Type').value): "Found 'Content-Type
→˓'

header when it was not expected in response"

• assertHeaderNotEmpty(headerName)
– Asserts that the provided header headerName is present and not empty.

– Example:

response.assertHeaderNotEmpty("Content-Type")

– Equivalent to these:

assertHeaderNotEmpty("Content-Type", response)

// header and operator can be passed as parameters from test script.
assertHeader("Content-Type", "notEmpty", response)

assert response.header('Content-Type').notEmpty(): "Expected
'Content-Type' header but did not find it in response"

assert notEmpty(response.header('Content-Type').value): "Expected
'Content-Type' header but did not find it in response"

• assertHeaderEquals(headerName, expectedValue)
– Asserts that the provided header headerName matches the provided expectedValue

– Example:

response.assertHeaderEquals("Content-Type","text/html")

– Equivalent to these:

assertHeaderEquals("Content-Type","text/html", response)

// header, expectedValue, and operator can be passed as parameters from␣
→˓test script.
assertHeader("Content-Type", "text/html", "equals", response)

assert response.header('Content-Type').equals("text/html"): "The actual␣
→˓value '"+

request.header('Content-Type')?.value+"' did not match the expected␣
→˓value

'text/html' for 'Content-Type' in response"

assert equals("text/html", response.header('Content-Type').value): "The␣
→˓actual value '"+

request.header('Content-Type')?.value+"' did not match the expected␣
→˓value

(continues on next page)

9.8. Rule Authoring 237

Touchstone Documentation, Release 6.2.1

(continued from previous page)

'text/html' for 'Content-Type' in response"

• assertHeaderNotEquals(headerName, expectedValue)
– Asserts that the provided header headerName does not match the provided expectedValue

– Example:

response.assertHeaderNotEquals("Content-Type","text/html")

– Equivalent to these:

assertHeaderNotEquals("Content-Type","text/html", response)

// header, expectedValue, and operator can be passed as parameters from␣
→˓test script.
assertHeader("Content-Type", "text/html", "notEquals", response)

assert response.header('Content-Type').notEquals("text/html"): "The␣
→˓actual value '"+

request.header('Content-Type')?.value+"' matched the expected value
→˓'text/html'

for 'Content-Type' in response"

assert notEquals("text/html", response.header('Content-Type').value):
→˓"The actual value '"+

request.header('Content-Type')?.value+"' matched the expected value
→˓'text/html'

for 'Content-Type' in response"

• assertHeaderGreaterThan(headerName, expectedValue)
– Asserts that the provided header headerName is greater than the provided expectedValue

– Example:

response.assertHeaderGreaterThan("Content-Length", 0)

– Equivalent to each of these:

∗ assertHeaderGreaterThan("Content-Length", 0, response)

// header, expectedValue, and operator can be passed as parameters from␣
→˓test script.
assertHeader("Content-Length", 0, "greaterThan", response)

∗ assert response.header('Content-Length').greaterThan(0): "Expected 'Content-
→˓Length' header

to be greater than 0 but was "+ response.header('Content-Length')?.value␣
→˓+" in response"

238 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

∗ assert greaterThan(0, response.header('Content-Length').value): "Expected
→˓'Content-Length' header

to be greater than 0 but was "+ response.header('Content-Length')?.value␣
→˓+" in response"

• assertHeaderLessThan(headerName, expectedValue)
– Asserts that the provided header headerName is less than the provided expectedValue

– Example:

response.assertHeaderLessThan("Content-Length", 100)

– Equivalent to each of these:

∗ assertHeaderLessThan("Content-Length", 100, response)

// header, expectedValue, and operator can be passed as parameters from␣
→˓test script.
assertHeader("Content-Length", 100, "lessThan", response)

∗ assert response.header('Content-Length').lessThan(100): "Expected 'Content-
→˓Length' header to be

less than 100 but was "+ response.header('Content-Length')?.value +" in␣
→˓response"

∗ assert lessThan(100, response.header('Content-Length').value): "Expected
→˓'Content-Length' header to be

less than 100 but was "+ response.header('Content-Length')?.value +" in␣
→˓response"

• assertHeaderIn(headerName, expectedValues)
– Asserts that the provided header headerName is one of the provided expectedValues where each value is

separated by a comma.

– Example:

// Asserts that 'Content-Type' header is 'application/fhir+json' or
→˓'application/fhir+json;charset=UTF-8'
response.assertHeaderIn("Content-Type", "application/fhir+json,
→˓application/fhir+json;charset=UTF-8")

– Equivalent to each of these:

∗ assertHeaderIn("Content-Type", "application/fhir+json,application/fhir+json;
→˓charset=UTF-8", response)

// header, expectedValue, and operator can be passed as parameters from␣
→˓test script.
assertHeader("Content-Type", "application/fhir+json,application/fhir+json;
→˓charset=UTF-8", "in", response)

9.8. Rule Authoring 239

Touchstone Documentation, Release 6.2.1

∗ assert response.header("Content-Type").in("application/fhir+json,
→˓application/fhir+json;charset=UTF-8"):

"Expected one of the values in [application/fhir+json, application/
→˓fhir+json;charset=UTF-8] for
'Content-Type' header but encountered \""+ response.header('Content-Type

→˓')?.value +"\" in response"

∗ assert isIn("application/fhir+json,application/fhir+json;charset=UTF-8",␣
→˓response.header("Content-Type").value):

"Expected one of the values in [application/fhir+json, application/
→˓fhir+json;charset=UTF-8] for 'Content-Type'

header but encountered \""+ response.header('Content-Type')?.value +"\
→˓" in response"

• assertHeaderNotIn(headerName, expectedValues)
– Asserts that the provided header headerName is none of the provided expectedValues where each value is

separated by a comma.

– Example:

// Asserts that 'Content-Type' header is neither 'text/plain' nor 'text/html'
response.assertHeaderNotIn("Content-Type", "text/plain,text/html")

– Equivalent to each of these:

∗ assertHeaderNotIn("Content-Type", "text/plain,text/html", response)

// header, expectedValue, and operator can be passed as parameters from␣
→˓test script.
assertHeader("Content-Type", "text/plain,text/html", "notIn", response)

∗ assert response.header("Content-Type").notIn("text/plain,text/html") :
→˓"Expected

none of the values in [text/plain, text/html] for 'Content-Type' header␣
→˓but

encountered \""+ response.header('Content-Type')?.value +"\" with␣
→˓operator 'notIn'

in response"

∗ assert isNotIn("text/plain,text/html", response.header("Content-Type").
→˓value) : "Expected

none of the values in [text/plain, text/html] for 'Content-Type' header␣
→˓but

encountered \""+ response.header('Content-Type')?.value +"\" with␣
→˓operator 'notIn'

in response"

240 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

9.8.4.5 Minimum

Minimum assertions are efficient in that it relieves the author from performing many individual path evaluations against
the payload and comparing those results to a set of expected values. The author would define one fixture that contains
all of the expected elements in the request or response payload and would then reference this fixture as minimumId.

The assertion can be performed on request and response variables offered by the Touchstone Rules-Engine.

• assertMinimum(mimimumId)
– Asserts that the payload contains all the element/content in another fixture pointed to by the provided min-

imumId. This can be a statically defined fixture or one that is dynamically set via responseId during
TestScript execution.

– Example:

response.assertMinimum("patient-create-PeterChalmers-min")

– Equivalent to these:

assertMinimum("patient-create-PeterChalmers-min", response)

Note that in both of the examples above, the fixture “patient-create-PeterChalmers-min” is expected to have been defined
and uploaded to Touchstone. See the test script connectathon-18-patient-base-client-id-json for an example on how
minimumId assertion is performed in TestScript and how the minimumId fixture is defined:

• Minimum assertion definition in TestScript:

• Minimum fixture definition in TestScript:

• Fixture contents for patient-create-PeterChalmers-min.json can be found here

9.8.4.6 Path

Path assertions involve extracting element (or attribute) values and comparing them to an expected value.

9.8. Rule Authoring 241

http://build.fhir.org/testscript-definitions.html#TestScript.setup.action.assert.minimumId
http://build.fhir.org/testscript-definitions.html#TestScript.setup.action.assert.minimumId
http://build.fhir.org/testscript-definitions.html#TestScript.setup.action.assert.minimumId
http://build.fhir.org/testscript.html
https://touchstone.aegis.net/touchstone/testscript?name=%2fFHIR3-3-0-Connectathon18%2fPatient-01-Intro%2fClient+Assigned+Id%2fconnectathon-18-patient-base-client-id-json
https://touchstone.aegis.net/touchstone/fixture?name=%2fFHIR3-3-0-Connectathon18%2fPatient-01-Intro%2f_reference%2fresources%2fpatient-create-PeterChalmers-min.json

Touchstone Documentation, Release 6.2.1

9.8.4.6.1 FHIRPath

FHIRPath assertions can be evaluated against payloads of both request and response variables offered by the Touch-
stone Rules-Engine. The same FHIRPath expression will work against both XML and JSON content. However,
FHIRPath assertions run significantly slower than XPath assertions and JsonPath assertions.

• assertFhirPathBoolean(fhirpath)
– Asserts that the evaluated value of the provided fhirpath expression is true

– Example:

// Asserts that the number of resource id elements in the response is 10
response.assertFhirPathBoolean("entry.resource.id.count() = 10")

– Equivalent to each of these:

∗ assertFhirPathBoolean("entry.resource.id.count() = 10", response)

∗ assert response.getFhirPathBoolean("entry.resource.id.count() = 10") : "The
expression \"entry.resource.id.count() != 10\" evaluated to false"

∗ assert response.fhirPathBoolean("entry.resource.id.count() = 10") : "The
expression \"entry.resource.id.count() != 10\" evaluated to false"

• assertFhirPathContains(fhirpath, expectedValue)
– Asserts that the evaluated value of the provided fhirpath expression contains the provided expectedValue.

– Example:

// Asserts that the value of the family element of the second entry␣
→˓contains 'Chalmers'
response.assertFhirPathContains("entry[1].resource.name.family",
→˓"Chalmers")

– Equivalent to each of these:

∗ assertFhirPathContains("entry[1].resource.name.family", "Chalmers",␣
→˓response)

∗ // fhirPath, expectedValue, and operator can be passed as parameters from␣
→˓test script.
assertFhirPath("entry[1].resource.name.family", "Chalmers", "contains",␣
→˓response)

∗ def family = response.getFhirPathValue("entry[1].resource.name.family")

assert family.contains("Chalmers"): "The actual value \""+family+"\" did␣
→˓not contain the expected value

\"Chalmers\" for \"entry[1].resource.name.family\" in response."

∗ def family = response.fhirPathValue("entry[1].resource.name.family")

(continues on next page)

242 Chapter 9. TestScript Authoring

http://hl7.org/fhirpath/index.html
/touchstone/userguide/html/testscript-authoring/rule-authoring/reference/path/xPath.html
/touchstone/userguide/html/testscript-authoring/rule-authoring/reference/path/jsonPath.html

Touchstone Documentation, Release 6.2.1

(continued from previous page)

assert containsIgnoreCase("chalmers", family): "The actual value \""+family+
→˓"\" did not contain the expected value

\"Chalmers\" for \"entry[1].resource.name.family\" in response."

∗ def family = response.fhirPath("entry[1].resource.name.family").value

assert contains("Chalmers", family): "The actual value \""+family+"\" did␣
→˓not contain the expected value

\"Chalmers\" for \"entry[1].resource.name.family\" in response."

Notice how the value of a FHIRPath evaluation can be stored in a variable. This is useful when you
want to develop more complicated rule scripts where the assertions involve multiple comparisons.

• assertFhirPathNotContains(fhirpath, expectedValue)
– Asserts that the evaluated value of the provided fhirpath expression does not contain the provided expect-

edValue.

– Example:

// Asserts that the value of the family element of the second entry␣
→˓contains 'Chalmers'
response.assertFhirPathNotContains("entry[1].resource.name.family",
→˓"Chalmers")

– Equivalent to each of these:

∗ assertFhirPathNotContains("entry[1].resource.name.family", "Chalmers",␣
→˓response)

∗ // fhirPath, expectedValue, and operator can be passed as parameters from␣
→˓test script.
assertFhirPath("entry[1].resource.name.family", "Chalmers", "notContains",␣
→˓response)

∗ def family = response.getFhirPathValue("entry[1].resource.name.family")

assert !family.contains("Chalmers"): "The actual value \""+family+"\"␣
→˓contained the expected value

\"Chalmers\" for \"entry[1].resource.name.family\" with operator
→˓'notContains' in response."

∗ def family = response.fhirPathValue("entry[1].resource.name.family")

assert notContainsIgnoreCase("chalmers", family): "The actual value \"
→˓"+family+"\" contained the expected value

\"Chalmers\" for \"entry[1].resource.name.family\" with operator
→˓'notContains' in response."

∗ def family = response.fhirPath("entry[1].resource.name.family").value

(continues on next page)

9.8. Rule Authoring 243

Touchstone Documentation, Release 6.2.1

(continued from previous page)

assert notContains("Chalmers", family): "The actual value \""+family+"\"␣
→˓contained the expected value

\"Chalmers\" for \"entry[1].resource.name.family\" with operator
→˓'notContains' in response."

• assertFhirPathEmpty(fhirpath)
– Asserts that the evaluated value of the provided fhirpath expression is absent or empty.

– Example:

response.assertFhirPathEmpty("entry[0].resource.photo.title")

– Equivalent to these:

assertFhirPathEmpty("entry[0].resource.photo.title", response)

response.fhirPath("entry[0].resource.photo.title").empty();

def title = response.getFhirPathValue("entry[0].resource.photo.title")

assert !title: "Expected title to be absent but was present in response"

def title = response.fhirPathValue("entry[0].resource.photo.title")

assert title==null: "Expected title to be absent but was present in␣
→˓response"

def title = response.fhirPath("entry[0].resource.photo.title").value

assert empty(title): "Expected title to be absent but was present in␣
→˓response"

• assertFhirPathNotEmpty(fhirpath)
– Asserts that the evaluated value of the provided fhirpath expression is present and not empty.

– Example:

response.assertFhirPathNotEmpty("entry[0].resource.birthDate")

– Equivalent to these:

assertFhirPathNotEmpty("entry[0].resource.birthDate", response)

response.fhirPath("entry[0].resource.birthDate").notEmpty();

def title = response.getFhirPathValue("entry[0].resource.birthDate")

assert title: "Expected birthDate to be absent but was present in␣
→˓response"

244 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

def title = response.fhirPathValue("entry[0].resource.birthDate")

assert title!=null: "Expected birthDate to be absent but was present in␣
→˓response"

def title = response.fhirPath("entry[0].resource.birthDate").value

assert notEmpty(title): "Expected birthDate to be absent but was present␣
→˓in response"

• assertFhirPathEquals(fhirpath, expectedValue)
– Asserts that the evaluated value of the provided fhirpath expression matches the provided expectedValue.

– Example:

// Asserts that the value of the family element of the first entry is
→˓'Chalmers'
response.assertFhirPathEquals("entry[0].resource.name.family", "Chalmers
→˓")

– Equivalent to each of these:

∗ assertFhirPathEquals("entry[0].resource.name.family", "Chalmers", response)

∗ // fhirPath, expectedValue, and operator can be passed as parameters from␣
→˓test script.
assertFhirPath("entry[0].resource.name.family", "Chalmers", "equals",␣
→˓response)

∗ def family = response.getFhirPathValue("entry[0].resource.name.family")

assert family.equals("Chalmers"): "The actual value \""+family+"\" did not␣
→˓match the expected value
\"Chalmers\" for \"entry[0].resource.name.family\" in response."

∗ def family = response.fhirPathValue("entry[0].resource.name.family")

assert equalsIgnoreCase("chalmers", family): "The actual value \""+family+"\
→˓" did not match the expected value

\"Chalmers\" for \"entry[0].resource.name.family\" in response."

∗ def family = response.fhirPath("entry[0].resource.name.family").getValue()

assert equals("Chalmers", family): "The actual value \""+family+"\" did not␣
→˓match the expected value

\"Chalmers\" for \"entry[0].resource.name.family\" in response."

∗ def family = response.fhirPath("entry[0].resource.name.family").value

assert family == "Chalmers": "The actual value \""+family+"\" did not match␣
→˓the expected value

\"Chalmers\" for \"entry[0].resource.name.family\" in response."

9.8. Rule Authoring 245

Touchstone Documentation, Release 6.2.1

• assertFhirPathNotEquals(fhirpath, expectedValue)
– Asserts that the evaluated value of the provided fhirpath expression does not match the provided expected-

Value.

– Example:

// Asserts that values of the family element of the first entry is not
→˓'Chalmers'
response.assertFhirPathNotEquals("entry[0].resource.name.family",
→˓"Chalmers")

– Equivalent to each of these:

∗ assertFhirPathNotEquals("entry[0].resource.name.family", "Chalmers",␣
→˓response)

∗ // fhirPath, expectedValue, and operator can be passed as parameters from␣
→˓test script.
assertFhirPath("entry[0].resource.name.family", "Chalmers", "notEquals",␣
→˓response)

∗ def family = response.getFhirPathValue("entry[0].resource.name.family")

assert !family.equals("Chalmers"): "The actual value \""+family+"\" matched
the expected value \"Chalmers\" for \"entry[0].resource.name.family\"␣

→˓with operator
'notEquals' in response."

∗ def family = response.fhirPathValue("entry[0].resource.name.family")

assert notEqualsIgnoreCase("chalmers", family): "The actual value \"
→˓"+family+"\" matched

the expected value \"Chalmers\" for \"entry[0].resource.name.family\"␣
→˓with operator

'notEquals' in response."

∗ def family = response.fhirPath("entry[0].resource.name.family").getValue()

assert family != "Chalmers": "The actual value \""+family+"\" matched
the expected value \"Chalmers\" for \"entry[0].resource.name.family\"␣

→˓with operator
'notEquals' in response."

∗ def family = response.fhirPath("entry[0].resource.name.family").value

assert notEquals("Chalmers", family): "The actual value \""+family+"\"␣
→˓matched

the expected value \"Chalmers\" for \"entry[0].resource.name.family\"␣
→˓with operator

'notEquals' in response."

• assertFhirPathGreaterThan(fhirpath, expectedValue)

246 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

– Asserts that the evaluated value of the provided fhirpath expression is greater than the provided expected-
Value.

– Example:

// Asserts that resource id of the second entry is greater than 1100 in␣
→˓the response
response.assertFhirPathGreaterThan("entry[1].resource.id", 1100)

– Equivalent to each of these:

∗ assertFhirPathGreaterThan("entry[1].resource.id", 1100, response)

∗ // fhirPath, expectedValue, and operator can be passed as parameters from␣
→˓test script.
assertFhirPath("entry[1].resource.id", "1100", "greaterThan", response)

∗ def id = response.getFhirPathValue("entry[1].resource.id")

assert id.toInteger() > 1100: "Expected \"entry[1].resource.id\" to be␣
→˓greater than 5000

but was "+id+" in response"

∗ def id = response.fhirPathValue("entry[1].resource.id")

assert (id as Integer) > 1100: "Expected \"entry[1].resource.id\" to be␣
→˓greater than 5000

but was "+id+" in response"

∗ def id = response.fhirPath("entry[1].resource.id").value

assert greaterThan(1100, id): "Expected \"entry[1].resource.id\" to be␣
→˓greater than 5000

but was "+id+" in response"

• assertFhirPathLessThan(fhirpath, expectedValue)
– Asserts that the evaluated value of the provided fhirpath expression is less than the provided expectedValue.

– Example:

// Asserts that resource id of the second entry is less than 1100 in the␣
→˓response
response.assertFhirPathLessThan("entry[1].resource.id", 1100)

– Equivalent to each of these:

∗ assertFhirPathLessThan("entry[1].resource.id", 1100, response)

∗ // fhirPath, expectedValue, and operator can be passed as parameters from␣
→˓test script.
assertFhirPath("entry[1].resource.id", "1100", "lessThan", response)

9.8. Rule Authoring 247

Touchstone Documentation, Release 6.2.1

∗ def id = response.getFhirPathValue("entry[1].resource.id")

assert id.toInteger() < 1100: "Expected \"entry[1].resource.id\" to be less␣
→˓than 5000

but was "+id+" in response"

∗ def id = response.fhirPath("entry[1].resource.id").getValue()

assert (id as Integer) < 1100: "Expected \"entry[1].resource.id\" to be␣
→˓less than 5000

but was "+id+" in response"

∗ def id = response.fhirPath("entry[1].resource.id").value

assert lessThan(1100, id): "Expected \"entry[1].resource.id\" to be less␣
→˓than 5000

but was "+id+" in response"

• assertFhirPathIn(fhirpath, expectedValues)
– Asserts that the evaluated value of the provided fhirpath expression is one of the provided expectedValues

where each value is separated by a comma.

– Example:

// Asserts that resource id of the second entry is either 1100 or 1101␣
→˓or 1102
response.assertFhirPathIn("entry[1].resource.id", "1100,1101,1102")

– Equivalent to each of these:

∗ assertFhirPathIn("entry[1].resource.id", "1100,1101,1102", response)

∗ // fhirPath, expectedValue, and operator can be passed as parameters from␣
→˓test script.
assertFhirPath("entry[1].resource.id", "1100,1101,1102", "in", response)

∗ def id = response.getFhirPathValue("entry[1].resource.id")

assert id in ["1100", "1101", "1102"]: "Expected one of the values in [1100,
→˓ 1101, 1102]

for \"entry[1].resource.id\" but encountered \""+id+"\" in response."

∗ def id = response.fhirPath("entry[1].resource.id").value

assert isIn("1100,1101,1102", id): "Expected one of the values in [1100,␣
→˓1101, 1102] for

\"entry[1].resource.id\" but encountered \""+id+"\" in response."

• assertFhirPathNotIn(fhirpath, expectedValues)
– Asserts that the evaluated value of the provided fhirpath expression is none of the provided expectedValues

where each value is separated by a comma.

248 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

– Example:

// Asserts that resource id of the second entry is either 1100 or 1101␣
→˓or 1102
response.assertFhirPathNotIn("entry[1].resource.id", "1100,1101,1102")

– Equivalent to each of these:

∗ assertFhirPathNotIn("entry[1].resource.id", "1100,1101,1102", response)

∗ // fhirPath, expectedValue, and operator can be passed as parameters from␣
→˓test script.
assertFhirPath("entry[1].resource.id", "1100,1101,1102", "notIn", response)

∗ def id = response.getFhirPathValue("entry[1].resource.id")

assert !(id in ["1100", "1101", "1102"]): "Expected none of the values in␣
→˓[1100, 1101, 1102]

for \"entry[1].resource.id\" but encountered \""+id+"\" with operator
→˓'notIn' in response."

∗ def id = response.fhirPath("entry[1].resource.id").value

assert isNotIn("1100,1101,1102", id): "Expected none of the values in [1100,
→˓ 1101, 1102] for

\"entry[1].resource.id\" but encountered \""+id+"\" with operator 'notIn
→˓' in response."

9.8.4.6.2 JSONPath

JSONPath assertions can be evaluated against payloads of both request and response variables offered by the Touch-
stone Rules-Engine. Both XPath assertions and JSONPath assertions run significantly faster than FHIRPath assertions.
Separate XPath and JSONPath expressions are needed though for XML and JSON content while only one FHIRPath
expression is needed for both XML and JSON content.

• assertJsonPathContains(jsonpath, expectedValue)
– Asserts that the evaluated value of the provided jsonpath expression contains the provided expectedValue.

– Example:

// Asserts that the value of the family element of the second entry␣
→˓contains 'Chalmers'
response.assertJsonPathContains("entry[1].resource.name.family",
→˓"Chalmers")

– Equivalent to each of these:

∗ assertJsonPathContains("entry[1].resource.name.family", "Chalmers",␣
→˓response)

9.8. Rule Authoring 249

http://goessner.net/articles/JsonPath/
/touchstone/userguide/html/testscript-authoring/rule-authoring/reference/path/xPath.html
/touchstone/userguide/html/testscript-authoring/rule-authoring/reference/path/fhirPath.html
https://www.w3.org/TR/xpath-30
http://goessner.net/articles/JsonPath/
http://hl7.org/fhirpath/index.html

Touchstone Documentation, Release 6.2.1

∗ // jsonPath, expectedValue, and operator can be passed as parameters from␣
→˓test script.
assertJsonPath("entry[1].resource.name.family", "Chalmers", "contains",␣
→˓response)

∗ def family = response.getJsonPathValue("entry[1].resource.name.family")

assert family.contains("Chalmers"): "The actual value \""+family+"\" did␣
→˓not contain the expected value

\"Chalmers\" for \"entry[1].resource.name.family\" in response."

∗ def family = response.jsonPath("entry[1].resource.name.family").value

assert contains("Chalmers", family): "The actual value \""+family+"\" did␣
→˓not contain the expected value

\"Chalmers\" for \"entry[1].resource.name.family\" in response."

Notice how the value of JsonPath evaluation can be stored in a variable. This is useful when you want
to develop more complicated rule scripts where the assertions involve multiple comparisons.

• assertJsonPathNotContains(jsonpath, expectedValue)
– Asserts that the evaluated value of the provided jsonpath expression does not contain the provided expect-

edValue.

– Example:

// Asserts that the value of the family element of the second entry␣
→˓contains 'Chalmers'
response.assertJsonPathNotContains("entry[1].resource.name.family",
→˓"Chalmers")

– Equivalent to each of these:

∗ assertJsonPathNotContains("entry[1].resource.name.family", "Chalmers",␣
→˓response)

∗ // jsonPath, expectedValue, and operator can be passed as parameters from␣
→˓test script.
assertJsonPath("entry[1].resource.name.family", "Chalmers", "notContains",␣
→˓response)

∗ def family = response.getJsonPathValue("entry[1].resource.name.family")

assert !family.contains("Chalmers"): "The actual value \""+family+"\"␣
→˓contained the expected value

\"Chalmers\" for \"entry[1].resource.name.family\" with operator
→˓'notContains' in response."

∗ def family = response.jsonPath("entry[1].resource.name.family").value

(continues on next page)

250 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

(continued from previous page)

assert notContains("Chalmers", family): "The actual value \""+family+"\"␣
→˓contained the expected value

\"Chalmers\" for \"entry[1].resource.name.family\" with operator
→˓'notContains' in response."

• assertJsonPathEmpty(jsonpath)
– Asserts that the evaluated value of the provided jsonpath expression is absent or empty.

– Example:

response.assertJsonPathEmpty("entry[0].resource.photo.title")

– Equivalent to these:

assertJsonPathEmpty("entry[0].resource.photo.title", response)

response.jsonPath("entry[0].resource.photo.title").empty();

def title = response.getJsonPathValue("entry[0].resource.photo.title")

assert !title: "Expected title to be absent but was present in response"

def title = response.jsonPath("entry[0].resource.photo.title").value

assert empty(title): "Expected title to be absent but was present in␣
→˓response"

• assertJsonPathNotEmpty(jsonpath)
– Asserts that the evaluated value of the provided jsonpath expression is present and not empty.

– Example:

response.assertJsonPathNotEmpty("entry[0].resource.birthDate")

– Equivalent to these:

assertJsonPathNotEmpty("entry[0].resource.birthDate", response)

response.jsonPath("entry[0].resource.birthDate").notEmpty();

def title = response.getJsonPathValue("entry[0].resource.birthDate")

assert title: "Expected birthDate to be absent but was present in␣
→˓response"

def title = response.jsonPath("entry[0].resource.birthDate").value

assert notEmpty(title): "Expected birthDate to be absent but was present␣
→˓in response"

• assertJsonPathEquals(jsonpath, expectedValue)

9.8. Rule Authoring 251

Touchstone Documentation, Release 6.2.1

– Asserts that the evaluated value of the provided jsonpath expression matches the provided expectedValue.

– Example:

// Asserts that the value of the family element of the first entry is
→˓'Chalmers'
response.assertJsonPathEquals("entry[1]/resource/Patient/name/family",
→˓"Chalmers")

– Equivalent to each of these:

∗ assertJsonPathEquals("entry[1]/resource/Patient/name/family", "Chalmers",␣
→˓response)

∗ // xPath, expectedValue, and operator can be passed as parameters from test␣
→˓script.
assertJsonPath("entry[1]/resource/Patient/name/family", "Chalmers", "equals
→˓", response)

∗ def family = response.getJsonPathValue("entry[1]/resource/Patient/name/
→˓family")

assert family.equals("Chalmers"): "The actual value \""+family+"\" did not␣
→˓match the expected value
\"Chalmers\" for \"entry[1]/resource/Patient/name/family\" in response."

∗ def family = response.jsonPath("entry[1]/resource/Patient/name/family").
→˓getValue()

assert family == "Chalmers": "The actual value \""+family+"\" did not match␣
→˓the expected value

\"Chalmers\" for \"entry[1]/resource/Patient/name/family\" in response."

∗ def family = response.xPath("entry[1]/resource/Patient/name/family").value

assert equals("Chalmers", family): "The actual value \""+family+"\" did not␣
→˓match the expected value

\"Chalmers\" for \"entry[1]/resource/Patient/name/family\" in response."

• assertJsonPathEquals(jsonpath, expectedValue)
– Asserts that the evaluated value of the provided jsonpath expression matches the provided expectedValue.

– Example:

// Asserts that the value of the family element of the first entry is
→˓'Chalmers'
response.assertJsonPathEquals("entry[0].resource.name.family", "Chalmers
→˓")

– Equivalent to each of these:

∗ assertJsonPathEquals("entry[0].resource.name.family", "Chalmers", response)

252 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

∗ // jsonPath, expectedValue, and operator can be passed as parameters from␣
→˓test script.
assertJsonPath("entry[0].resource.name.family", "Chalmers", "equals",␣
→˓response)

∗ def family = response.getJsonPathValue("entry[0].resource.name.family")

assert family.equals("Chalmers"): "The actual value \""+family+"\" did not␣
→˓match the expected value
\"Chalmers\" for \"entry[0].resource.name.family\" in response."

∗ def family = response.jsonPath("entry[0].resource.name.family").getValue()

assert family == "Chalmers": "The actual value \""+family+"\" did not match␣
→˓the expected value

\"Chalmers\" for \"entry[0].resource.name.family\" in response."

∗ def family = response.jsonPath("entry[0].resource.name.family").value

assert equals("Chalmers", family): "The actual value \""+family+"\" did not␣
→˓match the expected value

\"Chalmers\" for \"entry[0].resource.name.family\" in response."

• assertJsonPathNotEquals(jsonpath, expectedValue)
– Asserts that the evaluated value of the provided jsonpath expression does not match the provided expect-

edValue.

– Example:

// Asserts that values of the family element of the first entry is not
→˓'Chalmers'
response.assertJsonPathNotEquals("entry[0].resource.name.family",
→˓"Chalmers")

– Equivalent to each of these:

∗ assertJsonPathNotEquals("entry[0].resource.name.family", "Chalmers",␣
→˓response)

∗ // jsonPath, expectedValue, and operator can be passed as parameters from␣
→˓test script.
assertJsonPath("entry[0].resource.name.family", "Chalmers", "notEquals",␣
→˓response)

∗ def family = response.getJsonPathValue("entry[0].resource.name.family")

assert !family.equals("Chalmers"): "The actual value \""+family+"\" matched
the expected value \"Chalmers\" for \"entry[0].resource.name.family\"␣

→˓with operator
'notEquals' in response."

9.8. Rule Authoring 253

Touchstone Documentation, Release 6.2.1

∗ def family = response.jsonPath("entry[0].resource.name.family").getValue()

assert family != "Chalmers": "The actual value \""+family+"\" matched
the expected value \"Chalmers\" for \"entry[0].resource.name.family\"␣

→˓with operator
'notEquals' in response."

∗ def family = response.jsonPath("entry[0].resource.name.family").value

assert notEquals("Chalmers", family): "The actual value \""+family+"\"␣
→˓matched

the expected value \"Chalmers\" for \"entry[0].resource.name.family\"␣
→˓with operator

'notEquals' in response."

• assertJsonPathGreaterThan(jsonpath, expectedValue)
– Asserts that the evaluated value of the provided jsonpath expression is greater than the provided expected-

Value.

– Example:

// Asserts that resource id of the second entry is greater than 1100 in␣
→˓the response
response.assertJsonPathGreaterThan("entry[1].resource.id", 1100)

– Equivalent to each of these:

∗ assertJsonPathGreaterThan("entry[1].resource.id", 1100, response)

∗ // jsonPath, expectedValue, and operator can be passed as parameters from␣
→˓test script.
assertJsonPath("entry[1].resource.id", "1100", "greaterThan", response)

∗ def id = response.getJsonPathValue("entry[1].resource.id")

assert id.toInteger() > 1100: "Expected \"entry[1].resource.id\" to be␣
→˓greater than 5000

but was "+id+" in response"

∗ def id = response.jsonPath("entry[1].resource.id").getValue()

assert (id as Integer) > 1100: "Expected \"entry[1].resource.id\" to be␣
→˓greater than 5000

but was "+id+" in response"

∗ def id = response.jsonPath("entry[1].resource.id").value

assert greaterThan(1100, id): "Expected \"entry[1].resource.id\" to be␣
→˓greater than 5000

but was "+id+" in response"

• assertJsonPathLessThan(jsonpath, expectedValue)

254 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

– Asserts that the evaluated value of the provided jsonpath expression is less than the provided expectedValue.

– Example:

// Asserts that resource id of the first entry is less than 1100 in the␣
→˓response
response.assertJsonPathLessThan("entry[0].resource.id", 1100)

– Equivalent to each of these:

∗ assertJsonPathLessThan("entry[0].resource.id", 1100, response)

∗ // jsonPath, expectedValue, and operator can be passed as parameters from␣
→˓test script.
assertJsonPath("entry[0].resource.id", "1100", "lessThan", response)

∗ def id = response.getJsonPathValue("entry[0].resource.id")

assert id.toInteger() < 1100: "Expected \"entry[0].resource.id\" to be less␣
→˓than 5000

but was "+id+" in response"

∗ def id = response.jsonPath("entry[0].resource.id").getValue()

assert (id as Integer) < 1100: "Expected \"entry[0].resource.id\" to be␣
→˓less than 5000

but was "+id+" in response"

∗ def id = response.jsonPath("entry[0].resource.id").value

assert lessThan(1100, id): "Expected \"entry[0].resource.id\" to be less␣
→˓than 5000

but was "+id+" in response"

• assertJsonPathIn(jsonpath, expectedValues)
– Asserts that the evaluated value of the provided jsonpath expression is one of the provided expectedValues

where each value is separated by a comma.

– Example:

// Asserts that resource id of the second entry is either 1100 or 1101␣
→˓or 1102
response.assertJsonPathIn("entry[1].resource.id", "1100,1101,1102")

– Equivalent to each of these:

∗ assertJsonPathIn("entry[1].resource.id", "1100,1101,1102", response)

∗ // jsonPath, expectedValue, and operator can be passed as parameters from␣
→˓test script.
assertJsonPath("entry[1].resource.id", "1100,1101,1102", "in", response)

9.8. Rule Authoring 255

Touchstone Documentation, Release 6.2.1

∗ def id = response.getJsonPathValue("entry[1].resource.id")

assert id in ["1100", "1101", "1102"]: "Expected one of the values in [1100,
→˓ 1101, 1102]

for \"entry[1].resource.id\" but encountered \""+id+"\" in response."

∗ def id = response.jsonPath("entry[1].resource.id").value

assert isIn("1100,1101,1102", id): "Expected one of the values in [1100,␣
→˓1101, 1102] for

\"entry[1].resource.id\" but encountered \""+id+"\" in response."

• assertJsonPathNotIn(jsonpath, expectedValues)
– Asserts that the evaluated value of the provided jsonpath expression is none of the provided expectedValues

where each value is separated by a comma.

– Example:

// Asserts that resource id of the second entry is either 1100 or 1101␣
→˓or 1102
response.assertJsonPathNotIn("entry[1].resource.id", "1100,1101,1102")

– Equivalent to each of these:

∗ assertJsonPathNotIn("entry[1].resource.id", "1100,1101,1102", response)

∗ // jsonPath, expectedValue, and operator can be passed as parameters from␣
→˓test script.
assertJsonPath("entry[1].resource.id", "1100,1101,1102", "notIn", response)

∗ def id = response.getJsonPathValue("entry[1].resource.id")

assert !(id in ["1100", "1101", "1102"]): "Expected none of the values in␣
→˓[1100, 1101, 1102]

for \"entry[1].resource.id\" but encountered \""+id+"\" with operator
→˓'notIn' in response."

∗ def id = response.jsonPath("entry[1].resource.id").value

assert isNotIn("1100,1101,1102", id): "Expected none of the values in [1100,
→˓ 1101, 1102] for

\"entry[1].resource.id\" but encountered \""+id+"\" with operator 'notIn
→˓' in response."

256 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

9.8.4.6.3 NonFHIRPath

NonFhirPath assertions (comprising of XPath and JSONPath) can be evaluated against payloads of both request
and response variables offered by the Touchstone Rules-Engine. Both XPath assertions and JsonPath assertions run
significantly faster than FHIRPath assertions.

Both XPath and JSONPath expressions are needed for nonFhirPath assertions. Touchstone will use the XPath expres-
sion if the payload is XML and will use the JSONPath expression if it’s JSON. This relieves the rule author from
checking the content type of the payload which needs to be done for XPath assertion and JsonPath assertion.

• assertNonFhirPathContains(xpath, jsonpath, expectedValue)
– Asserts that the evaluated value of the provided xpath or jsonpath expression contains the provided expect-

edValue. Touchstone will use xpath if the payload is XML and jsonpath if it is JSON.

– Example:

// Asserts that the value of the family element of the second entry␣
→˓contains 'Chalmers'
response.assertNonFhirPathContains("entry[2]/resource/Patient/name/family
→˓", "entry[1].resource.name.family", "Chalmers")

– Equivalent to each of these:

∗ assertNonFhirPathContains("entry[2]/resource/Patient/name/family",
→˓"entry[1].resource.name.family", "Chalmers", response)

∗ // jsonPath, expectedValue, and operator can be passed as parameters from␣
→˓test script.
assertNonFhirPath("entry[2]/resource/Patient/name/family", "entry[1].
→˓resource.name.family", "Chalmers", "contains", response)

∗ def family = response.getNonFhirPathValue("entry[2]/resource/Patient/name/
→˓family", "entry[1].resource.name.family")

assert family.contains("Chalmers"): "The actual value \""+family+"\" did␣
→˓not contain the expected value

\"Chalmers\" for \"entry[1].resource.name.family\" in response."

∗ def family = response.nonFhirPath("entry[2]/resource/Patient/name/family",
→˓"entry[1].resource.name.family").value

assert contains("Chalmers", family): "The actual value \""+family+"\" did␣
→˓not contain the expected value

\"Chalmers\" for \"entry[1].resource.name.family\" in response."

Notice how the value of NonFhirPath evaluation can be stored in a variable. This is useful when you
want to develop more complicated rule scripts where the assertions involve multiple comparisons.

• assertNonFhirPathNotContains(xpath, jsonpath, expectedValue)
– Asserts that the evaluated value of the provided xpath or jsonpath expression does not contain the provided

expectedValue. Touchstone will use xpath if the payload is XML and jsonpath if it is JSON.

– Example:

9.8. Rule Authoring 257

https://www.w3.org/TR/xpath-30
http://goessner.net/articles/JsonPath/
/touchstone/userguide/html/testscript-authoring/rule-authoring/reference/path/xPath.html
/touchstone/userguide/html/testscript-authoring/rule-authoring/reference/path/jsonPath.html
/touchstone/userguide/html/testscript-authoring/rule-authoring/reference/path/fhirPath.html
https://www.w3.org/TR/xpath-30
http://goessner.net/articles/JsonPath/
/touchstone/userguide/html/testscript-authoring/rule-authoring/reference/path/xPath.html
/touchstone/userguide/html/testscript-authoring/rule-authoring/reference/path/jsonPath.html

Touchstone Documentation, Release 6.2.1

// Asserts that the value of the family element of the second entry␣
→˓contains 'Chalmers'
response.assertNonFhirPathNotContains("entry[2]/resource/Patient/name/
→˓family", "entry[1].resource.name.family", "Chalmers")

– Equivalent to each of these:

∗ assertNonFhirPathNotContains("entry[2]/resource/Patient/name/family",
→˓"entry[1].resource.name.family", "Chalmers", response)

∗ // jsonPath, expectedValue, and operator can be passed as parameters from␣
→˓test script.
assertNonFhirPath("entry[2]/resource/Patient/name/family", "entry[1].
→˓resource.name.family", "Chalmers", "notContains", response)

∗ def family = response.getNonFhirPathValue("entry[2]/resource/Patient/name/
→˓family", "entry[1].resource.name.family")

assert !family.contains("Chalmers"): "The actual value \""+family+"\"␣
→˓contained the expected value

\"Chalmers\" for \"entry[1].resource.name.family\" with operator
→˓'notContains' in response."

∗ def family = response.nonFhirPath("entry[2]/resource/Patient/name/family",
→˓"entry[1].resource.name.family").value

assert notContains("Chalmers", family): "The actual value \""+family+"\"␣
→˓contained the expected value

\"Chalmers\" for \"entry[1].resource.name.family\" with operator
→˓'notContains' in response."

• assertNonFhirPathEmpty(jsonpath)
– Asserts that the evaluated value of the provided xpath or jsonpath expression is absent or empty.

– Example:

response.assertNonFhirPathEmpty("entry[1]/resource/Patient/photo/title",
→˓"entry[0].resource.photo.title")

– Equivalent to these:

assertNonFhirPathEmpty("entry[1]/resource/Patient/photo/title",
→˓"entry[0].resource.photo.title", response)

response.jsonPath("entry[1]/resource/Patient/photo/title", "entry[0].
→˓resource.photo.title").empty();

def title = response.getNonFhirPathValue("entry[1]/resource/Patient/
→˓photo/title", "entry[0].resource.photo.title")

assert !title: "Expected title to be absent but was present in response"

258 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

def title = response.jsonPath("entry[1]/resource/Patient/photo/title",
→˓"entry[0].resource.photo.title").value

assert empty(title): "Expected title to be absent but was present in␣
→˓response"

• assertNonFhirPathNotEmpty(jsonpath)
– Asserts that the evaluated value of the provided xpath or jsonpath expression is present and not empty.

Touchstone will use xpath if the payload is XML and jsonpath if it is JSON.

– Example:

response.assertNonFhirPathNotEmpty("entry[1]/resource/Patient/birthDate",
→˓ "entry[0].resource.birthDate")

– Equivalent to these:

assertNonFhirPathNotEmpty("entry[1]/resource/Patient/birthDate",
→˓"entry[0].resource.birthDate", response)

response.nonFhirPath("entry[1]/resource/Patient/birthDate", "entry[0].
→˓resource.birthDate").notEmpty();

def title = response.getNonFhirPathValue("entry[1]/resource/Patient/
→˓birthDate", "entry[0].resource.birthDate")

assert title: "Expected birthDate to be absent but was present in␣
→˓response"

def title = response.nonFhirPath("entry[1]/resource/Patient/birthDate",
→˓"entry[0].resource.birthDate").value

assert notEmpty(title): "Expected birthDate to be absent but was present␣
→˓in response"

• assertNonFhirPathEquals(xpath, jsonpath, expectedValue)
– Asserts that the evaluated value of the provided xpath or jsonpath expression matches the provided expect-

edValue. Touchstone will use xpath if the payload is XML and jsonpath if it is JSON.

– Example:

// Asserts that the value of the family element of the first entry is
→˓'Chalmers'
response.assertNonFhirPathEquals("entry[1]/resource/Patient/name/family",
→˓ "Chalmers")

– Equivalent to each of these:

∗ assertNonFhirPathEquals("entry[1]/resource/Patient/name/family", "Chalmers",
→˓ response)

9.8. Rule Authoring 259

Touchstone Documentation, Release 6.2.1

∗ // xPath, expectedValue, and operator can be passed as parameters from test␣
→˓script.
assertNonFhirPath("entry[1]/resource/Patient/name/family", "Chalmers",
→˓"equals", response)

∗ def family = response.getNonFhirPathValue("entry[1]/resource/Patient/name/
→˓family")

assert family.equals("Chalmers"): "The actual value \""+family+"\" did not␣
→˓match the expected value
\"Chalmers\" for \"entry[1]/resource/Patient/name/family\" in response."

∗ def family = response.nonFhirPath("entry[1]/resource/Patient/name/family").
→˓getValue()

assert family == "Chalmers": "The actual value \""+family+"\" did not match␣
→˓the expected value

\"Chalmers\" for \"entry[1]/resource/Patient/name/family\" in response."

∗ def family = response.xPath("entry[1]/resource/Patient/name/family").value

assert equals("Chalmers", family): "The actual value \""+family+"\" did not␣
→˓match the expected value

\"Chalmers\" for \"entry[1]/resource/Patient/name/family\" in response."

• assertNonFhirPathEquals(xpath, jsonpath, expectedValue)
– Asserts that the evaluated value of the provided xpath or jsonpath expression matches the provided expect-

edValue. Touchstone will use xpath if the payload is XML and jsonpath if it is JSON.

– Example:

// Asserts that the value of the family element of the first entry is
→˓'Chalmers'
response.assertNonFhirPathEquals("entry[1]/resource/Patient/name/family",
→˓ "entry[0].resource.name.family", "Chalmers")

– Equivalent to each of these:

∗ assertNonFhirPathEquals("entry[1]/resource/Patient/name/family", "entry[0].
→˓resource.name.family", "Chalmers", response)

∗ // jsonPath, expectedValue, and operator can be passed as parameters from␣
→˓test script.
assertNonFhirPath("entry[1]/resource/Patient/name/family", "entry[0].
→˓resource.name.family", "Chalmers", "equals", response)

∗ def family = response.getNonFhirPathValue("entry[1]/resource/Patient/name/
→˓family", "entry[0].resource.name.family")

assert family.equals("Chalmers"): "The actual value \""+family+"\" did not␣
→˓match the expected value
\"Chalmers\" for \"entry[0].resource.name.family\" in response."

260 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

∗ def family = response.nonFhirPath("entry[1]/resource/Patient/name/family",
→˓"entry[0].resource.name.family").getValue()

assert family == "Chalmers": "The actual value \""+family+"\" did not match␣
→˓the expected value

\"Chalmers\" for \"entry[0].resource.name.family\" in response."

∗ def family = response.nonFhirPath("entry[1]/resource/Patient/name/family",
→˓"entry[0].resource.name.family").value

assert equals("Chalmers", family): "The actual value \""+family+"\" did not␣
→˓match the expected value

\"Chalmers\" for \"entry[0].resource.name.family\" in response."

• assertNonFhirPathNotEquals(xpath, jsonpath, expectedValue)
– Asserts that the evaluated value of the provided xpath or jsonpath expression does not match the provided

expectedValue. Touchstone will use xpath if the payload is XML and jsonpath if it is JSON.

– Example:

// Asserts that values of the family element of the first entry is not
→˓'Chalmers'
response.assertNonFhirPathNotEquals("entry[1]/resource/Patient/name/
→˓family", "entry[0].resource.name.family", "Chalmers")

– Equivalent to each of these:

∗ assertNonFhirPathNotEquals("entry[1]/resource/Patient/name/family",
→˓"entry[0].resource.name.family", "Chalmers", response)

∗ // jsonPath, expectedValue, and operator can be passed as parameters from␣
→˓test script.
assertNonFhirPath("entry[1]/resource/Patient/name/family", "entry[0].
→˓resource.name.family", "Chalmers", "notEquals", response)

∗ def family = response.getNonFhirPathValue("entry[1]/resource/Patient/name/
→˓family", "entry[0].resource.name.family")

assert !family.equals("Chalmers"): "The actual value \""+family+"\" matched
the expected value \"Chalmers\" for \"entry[0].resource.name.family\"␣

→˓with operator
'notEquals' in response."

∗ def family = response.nonFhirPath("entry[1]/resource/Patient/name/family",
→˓"entry[0].resource.name.family").getValue()

assert family != "Chalmers": "The actual value \""+family+"\" matched
the expected value \"Chalmers\" for \"entry[0].resource.name.family\"␣

→˓with operator
'notEquals' in response."

9.8. Rule Authoring 261

Touchstone Documentation, Release 6.2.1

∗ def family = response.nonFhirPath("entry[1]/resource/Patient/name/family",
→˓"entry[0].resource.name.family").value

assert notEquals("Chalmers", family): "The actual value \""+family+"\"␣
→˓matched

the expected value \"Chalmers\" for \"entry[0].resource.name.family\"␣
→˓with operator

'notEquals' in response."

• assertNonFhirPathGreaterThan(xpath, jsonpath, expectedValue)
– Asserts that the evaluated value of the provided xpath or jsonpath expression is greater than the provided

expectedValue. Touchstone will use xpath if the payload is XML and jsonpath if it is JSON.

– Example:

// Asserts that resource id of the second entry is greater than 1100 in␣
→˓the response
response.assertNonFhirPathGreaterThan("entry[2]/resource/Patient/id",
→˓"entry[1].resource.id", 1100)

– Equivalent to each of these:

∗ assertNonFhirPathGreaterThan("entry[2]/resource/Patient/id", "entry[1].
→˓resource.id", 1100, response)

∗ // jsonPath, expectedValue, and operator can be passed as parameters from␣
→˓test script.
assertNonFhirPath("entry[2]/resource/Patient/id", "entry[1].resource.id",
→˓"1100", "greaterThan", response)

∗ def id = response.getNonFhirPathValue("entry[2]/resource/Patient/id",
→˓"entry[1].resource.id")

assert id.toInteger() > 1100: "Expected \"entry[1].resource.id\" to be␣
→˓greater than 5000

but was "+id+" in response"

∗ def id = response.nonFhirPath("entry[2]/resource/Patient/id", "entry[1].
→˓resource.id").getValue()

assert (id as Integer) > 1100: "Expected \"entry[1].resource.id\" to be␣
→˓greater than 5000

but was "+id+" in response"

∗ def id = response.nonFhirPath("entry[2]/resource/Patient/id", "entry[1].
→˓resource.id").value

assert greaterThan(1100, id): "Expected \"entry[1].resource.id\" to be␣
→˓greater than 5000

but was "+id+" in response"

• assertNonFhirPathLessThan(xpath, jsonpath, expectedValue)

262 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

– Asserts that the evaluated value of the provided xpath or jsonpath expression is less than the provided
expectedValue. Touchstone will use xpath if the payload is XML and jsonpath if it is JSON.

– Example:

// Asserts that resource id of the first entry is less than 1100 in the␣
→˓response
response.assertNonFhirPathLessThan("entry[1]/resource/Patient/id",
→˓"entry[0].resource.id", 1100)

– Equivalent to each of these:

∗ assertNonFhirPathLessThan("entry[1]/resource/Patient/id", "entry[0].
→˓resource.id", 1100, response)

∗ // jsonPath, expectedValue, and operator can be passed as parameters from␣
→˓test script.
assertNonFhirPath("entry[1]/resource/Patient/id", "entry[0].resource.id",
→˓"1100", "lessThan", response)

∗ def id = response.getNonFhirPathValue("entry[1]/resource/Patient/id",
→˓"entry[0].resource.id")

assert id.toInteger() < 1100: "Expected \"entry[0].resource.id\" to be less␣
→˓than 5000

but was "+id+" in response"

∗ def id = response.nonFhirPath("entry[1]/resource/Patient/id", "entry[0].
→˓resource.id").getValue()

assert (id as Integer) < 1100: "Expected \"entry[0].resource.id\" to be␣
→˓less than 5000

but was "+id+" in response"

∗ def id = response.nonFhirPath("entry[1]/resource/Patient/id", "entry[0].
→˓resource.id").value

assert lessThan(1100, id): "Expected \"entry[0].resource.id\" to be less␣
→˓than 5000

but was "+id+" in response"

• assertNonFhirPathIn(xpath, jsonpath, expectedValues)
– Asserts that the evaluated value of the provided xpath or jsonpath expression is one of the provided expect-

edValues where each value is separated by a comma. Touchstone will use xpath if the payload is XML and
jsonpath if it is JSON.

– Example:

// Asserts that resource id of the second entry is either 1100 or 1101␣
→˓or 1102
response.assertNonFhirPathIn("entry[2]/resource/Patient/id", "entry[1].
→˓resource.id", "1100,1101,1102")

– Equivalent to each of these:

9.8. Rule Authoring 263

Touchstone Documentation, Release 6.2.1

∗ assertNonFhirPathIn("entry[2]/resource/Patient/id", "entry[1].resource.id",
→˓"1100,1101,1102", response)

∗ // jsonPath, expectedValue, and operator can be passed as parameters from␣
→˓test script.
assertNonFhirPath("entry[2]/resource/Patient/id", "entry[1].resource.id",
→˓"1100,1101,1102", "in", response)

∗ def id = response.getNonFhirPathValue("entry[2]/resource/Patient/id",
→˓"entry[1].resource.id")

assert id in ["1100", "1101", "1102"]: "Expected one of the values in [1100,
→˓ 1101, 1102]

for \"entry[1].resource.id\" but encountered \""+id+"\" in response."

∗ def id = response.nonFhirPath("entry[2]/resource/Patient/id", "entry[1].
→˓resource.id").value

assert isIn("1100,1101,1102", id): "Expected one of the values in [1100,␣
→˓1101, 1102] for

\"entry[1].resource.id\" but encountered \""+id+"\" in response."

• assertNonFhirPathNotIn(xpath, jsonpath, expectedValues)
– Asserts that the evaluated value of the provided xpath or jsonpath expression is none of the provided ex-

pectedValues where each value is separated by a comma. Touchstone will use xpath if the payload is XML
and jsonpath if it is JSON.

– Example:

// Asserts that resource id of the second entry is either 1100 or 1101␣
→˓or 1102
response.assertNonFhirPathNotIn("entry[2]/resource/Patient/id",
→˓"entry[1].resource.id", "1100,1101,1102")

– Equivalent to each of these:

∗ assertNonFhirPathNotIn("entry[2]/resource/Patient/id", "entry[1].resource.id
→˓", "1100,1101,1102", response)

∗ // jsonPath, expectedValue, and operator can be passed as parameters from␣
→˓test script.
assertNonFhirPath("entry[2]/resource/Patient/id", "entry[1].resource.id",
→˓"1100,1101,1102", "notIn", response)

∗ def id = response.getNonFhirPathValue("entry[2]/resource/Patient/id",
→˓"entry[1].resource.id")

assert !(id in ["1100", "1101", "1102"]): "Expected none of the values in␣
→˓[1100, 1101, 1102]

for \"entry[1].resource.id\" but encountered \""+id+"\" with operator
→˓'notIn' in response."

264 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

∗ def id = response.nonFhirPath("entry[2]/resource/Patient/id", "entry[1].
→˓resource.id").value

assert isNotIn("1100,1101,1102", id): "Expected none of the values in [1100,
→˓ 1101, 1102] for

\"entry[1].resource.id\" but encountered \""+id+"\" with operator 'notIn
→˓' in response."

9.8.4.6.4 XPath

XPath assertions can be evaluated against payloads of both request and response variables offered by the Touch-
stone Rules-Engine. Both XPath assertions and JsonPath assertions run significantly faster than FHIRPath assertions.
Separate XPath and JSONPath expressions are needed though for XML and JSON content while only one FHIRPath
expression is needed for both XML and JSON content.

• assertXPathContains(xpath, expectedValue)
– Asserts that the evaluated value of the provided xpath expression contains the provided expectedValue.

– Example:

// Asserts that the value of the family element of the second entry␣
→˓contains 'Chalmers'
response.assertXPathContains("entry[2]/resource/Patient/name/family",
→˓"Chalmers")

– Equivalent to each of these:

∗ assertXPathContains("entry[2]/resource/Patient/name/family", "Chalmers",␣
→˓response)

∗ // xPath, expectedValue, and operator can be passed as parameters from test␣
→˓script.
assertXPath("entry[2]/resource/Patient/name/family", "Chalmers", "contains",
→˓ response)

∗ def family = response.getXPathValue("entry[2]/resource/Patient/name/family")

assert family.contains("Chalmers"): "The actual value \""+family+"\" did␣
→˓not contain the expected value

\"Chalmers\" for \"entry[2]/resource/Patient/name/family\" in response."

∗ def family = response.xPath("entry[2]/resource/Patient/name/family").value

assert contains("Chalmers", family): "The actual value \""+family+"\" did␣
→˓not contain the expected value

\"Chalmers\" for \"entry[2]/resource/Patient/name/family\" in response."

Notice how the value of XPath evaluation can be stored in a variable. This is useful when you want to
develop more complicated rule scripts where the assertions involve multiple comparisons.

• assertXPathNotContains(xpath, expectedValue)

9.8. Rule Authoring 265

https://www.w3.org/TR/xpath-30
/touchstone/userguide/html/testscript-authoring/rule-authoring/reference/path/jsonPath.html
/touchstone/userguide/html/testscript-authoring/rule-authoring/reference/path/fhirPath.html
https://www.w3.org/TR/xpath-30
http://goessner.net/articles/JsonPath/
http://hl7.org/fhirpath/index.html

Touchstone Documentation, Release 6.2.1

– Asserts that the evaluated value of the provided xpath expression does not contain the provided expected-
Value.

– Example:

// Asserts that the value of the family element of the second entry␣
→˓contains 'Chalmers'
response.assertXPathNotContains("entry[2]/resource/Patient/name/family",
→˓"Chalmers")

– Equivalent to each of these:

∗ assertXPathNotContains("entry[2]/resource/Patient/name/family", "Chalmers",␣
→˓response)

∗ // xPath, expectedValue, and operator can be passed as parameters from test␣
→˓script.
assertXPath("entry[2]/resource/Patient/name/family", "Chalmers",
→˓"notContains", response)

∗ def family = response.getXPathValue("entry[2]/resource/Patient/name/family")

assert !family.contains("Chalmers"): "The actual value \""+family+"\"␣
→˓contained the expected value

\"Chalmers\" for \"entry[2]/resource/Patient/name/family\" with operator
→˓'notContains' in response."

∗ def family = response.xPath("entry[2]/resource/Patient/name/family").value

assert notContains("Chalmers", family): "The actual value \""+family+"\"␣
→˓contained the expected value

\"Chalmers\" for \"entry[2]/resource/Patient/name/family\" with␣
→˓operator 'notContains' in response."

• assertXPathEmpty(xpath)
– Asserts that the evaluated value of the provided xpath expression is absent or empty.

– Example:

response.assertXPathEmpty("entry[1]/resource/Patient/photo/title")

– Equivalent to these:

assertXPathEmpty("entry[1]/resource/Patient/photo/title", response)

response.fhirPath("entry[1]/resource/Patient/photo/title").empty();

def title = response.getXPathValue("entry[1]/resource/Patient/photo/title
→˓")

assert !title: "Expected title to be absent but was present in response"

266 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

def title = response.xPath("entry[1]/resource/Patient/photo/title").value

assert empty(title): "Expected title to be absent but was present in␣
→˓response"

• assertXPathNotEmpty(xpath)
– Asserts that the evaluated value of the provided xpath expression is present and not empty.

– Example:

response.assertXPathNotEmpty("entry[1]/resource/Patient/birthDate")

– Equivalent to these:

assertXPathNotEmpty("entry[1]/resource/Patient/birthDate", response)

response.xPath("entry[1]/resource/Patient/birthDate").notEmpty();

def title = response.getXPathValue("entry[1]/resource/Patient/birthDate")

assert title: "Expected birthDate to be absent but was present in␣
→˓response"

def title = response.xPath("entry[1]/resource/Patient/birthDate").value

assert notEmpty(title): "Expected birthDate to be absent but was present␣
→˓in response"

• assertXPathEquals(xpath, expectedValue)
– Asserts that the evaluated value of the provided xpath expression matches the provided expectedValue.

– Example:

// Asserts that the value of the family element of the first entry is
→˓'Chalmers'
response.assertXPathEquals("entry[1]/resource/Patient/name/family",
→˓"Chalmers")

– Equivalent to each of these:

∗ assertXPathEquals("entry[1]/resource/Patient/name/family", "Chalmers",␣
→˓response)

∗ // xPath, expectedValue, and operator can be passed as parameters from test␣
→˓script.
assertXPath("entry[1]/resource/Patient/name/family", "Chalmers", "equals",␣
→˓response)

∗ def family = response.getXPathValue("entry[1]/resource/Patient/name/family")

assert family.equals("Chalmers"): "The actual value \""+family+"\" did not␣
→˓match the expected value
\"Chalmers\" for \"entry[1]/resource/Patient/name/family\" in response."

9.8. Rule Authoring 267

Touchstone Documentation, Release 6.2.1

∗ def family = response.xPath("entry[1]/resource/Patient/name/family").
→˓getValue()

assert family == "Chalmers": "The actual value \""+family+"\" did not match␣
→˓the expected value

\"Chalmers\" for \"entry[1]/resource/Patient/name/family\" in response."

∗ def family = response.xPath("entry[1]/resource/Patient/name/family").value

assert equals("Chalmers", family): "The actual value \""+family+"\" did not␣
→˓match the expected value

\"Chalmers\" for \"entry[1]/resource/Patient/name/family\" in response."

• assertXPathNotEquals(xpath, expectedValue)
– Asserts that the evaluated value of the provided xpath expression does not match the provided expected-

Value.

– Example:

// Asserts that values of the family element of the first entry is not
→˓'Chalmers'
response.assertXPathNotEquals("entry[1]/resource/Patient/name/family",
→˓"Chalmers")

– Equivalent to each of these:

∗ assertXPathNotEquals("entry[1]/resource/Patient/name/family", "Chalmers",␣
→˓response)

∗ // xPath, expectedValue, and operator can be passed as parameters from test␣
→˓script.
assertXPath("entry[1]/resource/Patient/name/family", "Chalmers", "notEquals
→˓", response)

∗ def family = response.getXPathValue("entry[1]/resource/Patient/name/family")

assert !family.equals("Chalmers"): "The actual value \""+family+"\" matched
the expected value \"Chalmers\" for \"entry[1]/resource/Patient/name/

→˓family\" with operator
'notEquals' in response."

∗ def family = response.xPath("entry[1]/resource/Patient/name/family").
→˓getValue()

assert family != "Chalmers": "The actual value \""+family+"\" matched
the expected value \"Chalmers\" for \"entry[1]/resource/Patient/name/

→˓family\" with operator
'notEquals' in response."

∗ def family = response.xPath("entry[1]/resource/Patient/name/family").value

assert notEquals("Chalmers", family): "The actual value \""+family+"\"␣
→˓matched (continues on next page)

268 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

(continued from previous page)

the expected value \"Chalmers\" for \"entry[1]/resource/Patient/name/
→˓family\" with operator

'notEquals' in response."

• assertXPathGreaterThan(xpath, expectedValue)
– Asserts that the evaluated value of the provided xpath expression is greater than the provided expectedValue.

– Example:

// Asserts that resource id of the second entry is greater than 1100 in␣
→˓the response
response.assertXPathGreaterThan("entry[2]/resource/Patient/id", 1100)

– Equivalent to each of these:

∗ assertXPathGreaterThan("entry[2]/resource/Patient/id", 1100, response)

∗ // xPath, expectedValue, and operator can be passed as parameters from test␣
→˓script.
assertXPath("entry[2]/resource/Patient/id", "1100", "greaterThan", response)

∗ def id = response.getXPathValue("entry[2]/resource/Patient/id")

assert id.toInteger() > 1100: "Expected \"entry[2]/resource/Patient/id\" to␣
→˓be greater than 5000

but was "+id+" in response"

∗ def id = response.xPath("entry[2]/resource/Patient/id").getValue()

assert (id as Integer) > 1100: "Expected \"entry[2]/resource/Patient/id\"␣
→˓to be greater than 5000

but was "+id+" in response"

∗ def id = response.xPath("entry[2]/resource/Patient/id").value

assert greaterThan(1100, id): "Expected \"entry[2]/resource/Patient/id\" to␣
→˓be greater than 5000

but was "+id+" in response"

• assertXPathLessThan(xpath, expectedValue)
– Asserts that the evaluated value of the provided xpath expression is less than the provided expectedValue.

– Example:

// Asserts that resource id of the first entry is less than 1100 in the␣
→˓response
response.assertXPathLessThan("entry[1]/resource/Patient/id", 1100)

– Equivalent to each of these:

∗ assertXPathLessThan("entry[1]/resource/Patient/id", 1100, response)

9.8. Rule Authoring 269

Touchstone Documentation, Release 6.2.1

∗ // xPath, expectedValue, and operator can be passed as parameters from test␣
→˓script.
assertXPath("entry[1]/resource/Patient/id", "1100", "lessThan", response)

∗ def id = response.getXPathValue("entry[1]/resource/Patient/id")

assert id.toInteger() < 1100: "Expected \"entry[1]/resource/Patient/id\" to␣
→˓be less than 5000

but was "+id+" in response"

∗ def id = response.xPath("entry[1]/resource/Patient/id").getValue()

assert (id as Integer) < 1100: "Expected \"entry[1]/resource/Patient/id\"␣
→˓to be less than 5000

but was "+id+" in response"

∗ def id = response.xPath("entry[1]/resource/Patient/id").value

assert lessThan(1100, id): "Expected \"entry[1]/resource/Patient/id\" to be␣
→˓less than 5000

but was "+id+" in response"

• assertXPathIn(xpath, expectedValues)
– Asserts that the evaluated value of the provided xpath expression is one of the provided expectedValues

where each value is separated by a comma.

– Example:

// Asserts that resource id of the second entry is either 1100 or 1101␣
→˓or 1102
response.assertXPathIn("entry[2]/resource/Patient/id", "1100,1101,1102")

– Equivalent to each of these:

∗ assertXPathIn("entry[2]/resource/Patient/id", "1100,1101,1102", response)

∗ // xPath, expectedValue, and operator can be passed as parameters from test␣
→˓script.
assertXPath("entry[2]/resource/Patient/id", "1100,1101,1102", "in",␣
→˓response)

∗ def id = response.getXPathValue("entry[2]/resource/Patient/id")

assert id in ["1100", "1101", "1102"]: "Expected one of the values in [1100,
→˓ 1101, 1102]

for \"entry[2]/resource/Patient/id\" but encountered \""+id+"\" in␣
→˓response."

∗ def id = response.xPath("entry[2]/resource/Patient/id").value

(continues on next page)

270 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

(continued from previous page)

assert isIn("1100,1101,1102", id): "Expected one of the values in [1100,␣
→˓1101, 1102] for

\"entry[2]/resource/Patient/id\" but encountered \""+id+"\" in response."

• assertXPathNotIn(xpath, expectedValues)
– Asserts that the evaluated value of the provided xpath expression is none of the provided expectedValues

where each value is separated by a comma.

– Example:

// Asserts that resource id of the second entry is either 1100 or 1101␣
→˓or 1102
response.assertXPathNotIn("entry[2]/resource/Patient/id", "1100,1101,1102
→˓")

– Equivalent to each of these:

∗ assertXPathNotIn("entry[2]/resource/Patient/id", "1100,1101,1102", response)

∗ // xPath, expectedValue, and operator can be passed as parameters from test␣
→˓script.
assertXPath("entry[2]/resource/Patient/id", "1100,1101,1102", "notIn",␣
→˓response)

∗ def id = response.getXPathValue("entry[2]/resource/Patient/id")

assert !(id in ["1100", "1101", "1102"]): "Expected none of the values in␣
→˓[1100, 1101, 1102]

for \"entry[2]/resource/Patient/id\" but encountered \""+id+"\" with␣
→˓operator 'notIn' in response."

∗ def id = response.xPath("entry[2]/resource/Patient/id").value

assert isNotIn("1100,1101,1102", id): "Expected none of the values in [1100,
→˓ 1101, 1102] for

\"entry[2]/resource/Patient/id\" but encountered \""+id+"\" with␣
→˓operator 'notIn' in response."

9.8.4.7 Profile

The assertion below can be performed on request and response variables offered by the Touchstone Rules-Engine.
This is similar to what the TestScript does via the validateProfileId assertion.

See the test script Patient-server-id-json for an example on how validateProfileId assertion is performed in TestScript
and how the profile is defined:

• ValidateProfile assertion definition in TestScript:

9.8. Rule Authoring 271

http://build.fhir.org/testscript-definitions.html#TestScript.setup.action.assert.validateProfileId

Touchstone Documentation, Release 6.2.1

• Profile definition in TestScript:

• assertValidWithProfileId(validateProfileId)
– Asserts that the response is valid according to the Profile specified by validateProfileId.

– Example:

response.assertValidWithProfileId("bundle-profile")

– Equivalent to these:

response.validateWithProfileId("bundle-profile")

assertValidWithProfileId("bundle-profile", response)

validateWithProfileId("bundle-profile", response)

• assertValidWithProfile(validateProfileReference)
– Rather than specifying a profile id that’s defined in the TestScript, we can validate using the profile URI

directly. This call asserts that the request or response is valid according to the Profile URI specified by
validateProfileReference.

– Example:

response.assertValidWithProfile("http://hl7.org/fhir/StructureDefinition/
→˓Bundle")

– Equivalent to these:

response.validateWithProfile("http://hl7.org/fhir/StructureDefinition/
→˓Bundle")

assertValidWithProfile("http://hl7.org/fhir/StructureDefinition/Bundle",␣
→˓response)

validateWithProfile("http://hl7.org/fhir/StructureDefinition/Bundle",␣
→˓response)

• assertValidXmlExtractWithProfileId(xpath, validateProfileId)
– Asserts that the XML content extracted from the request or response using the specified xpath expression

is valid according to the Profile specified by validateProfileId. Please refer to XPath for more information
on XPath expressions.

– Example:

272 Chapter 9. TestScript Authoring

http://build.fhir.org/testscript-definitions.html#TestScript.setup.action.assert.validateProfileId
http://build.fhir.org/testscript-definitions.html#TestScript.setup.action.assert.validateProfileId
https://www.w3.org/TR/xpath-30

Touchstone Documentation, Release 6.2.1

response.assertValidXmlExtractWithProfileId("Bundle/entry[1]/resource/
→˓Patient", "bundle-profile")

– Equivalent to these:

response.extractXmlAndValidateWithProfileId("Bundle/entry[1]/resource/
→˓Patient", "bundle-profile")

assertValidXmlExtractWithProfileId("Bundle/entry[1]/resource/Patient",
→˓"bundle-profile", response)

extractXmlAndValidateWithProfileId("Bundle/entry[1]/resource/Patient",
→˓"bundle-profile", response)

• assertValidXmlExtractWithProfile(xpath, validateProfileReference)
– Asserts that the XML content extracted from the request or response using the specified xpath expression

is valid according to the Profile URI specified by validateProfileReference. Please refer to XPath for more
information on XPath expressions.

– Example:

response.assertValidXmlExtractWithProfile("Bundle/entry[1]/resource/
→˓Patient",

"http://hl7.org/fhir/StructureDefinition/Bundle")

– Equivalent to these:

response.extractXmlAndValidateWithProfile("Bundle/entry[1]/resource/
→˓Patient",

"http://hl7.org/fhir/StructureDefinition/Bundle")

assertValidXmlExtractWithProfile("Bundle/entry[1]/resource/Patient",
"http://hl7.org/fhir/StructureDefinition/Bundle", response)

extractXmlAndValidateWithProfile("Bundle/entry[1]/resource/Patient",
"http://hl7.org/fhir/StructureDefinition/Bundle", response)

• assertValidJsonExtractWithProfileId(jsonpath, validateProfileId)
– Asserts that the JSON content extracted from the request or response using the specified jsonpath expres-

sion is valid according to the Profile specified by validateProfileId. Please refer to JSONPath for more
information on JSONPath expressions.

– Example:

response.assertValidJsonExtractWithProfileId("context.orders[0]", "proc-
→˓request-profile")

– Equivalent to these:

response.extractJsonAndValidateWithProfileId("context.orders[0]", "proc-
→˓request-profile")

9.8. Rule Authoring 273

https://www.w3.org/TR/xpath-30
http://build.fhir.org/testscript-definitions.html#TestScript.setup.action.assert.validateProfileId
http://goessner.net/articles/JsonPath/

Touchstone Documentation, Release 6.2.1

assertValidJsonExtractWithProfileId("context.orders[0]", "proc-request-
→˓profile", response)

extractJsonAndValidateWithProfileId("context.orders[0]", "proc-request-
→˓profile", response)

• assertValidJsonExtractWithProfile(jsonpath, validateProfileReference)
– Asserts that the JSON content extracted from the request or response using the specified jsonpath expression

is valid according to the Profile URI specified by validateProfileReference. Please refer to JSONPath for
more information on JSONPath expressions.

– Example:

response.assertValidJsonExtractWithProfile("context.orders[0]",
"http://hl7.org/fhir/StructureDefinition/ProcedureRequest")

– Equivalent to these:

response.extractJsonAndValidateWithProfile("context.orders[0]",
"http://hl7.org/fhir/StructureDefinition/ProcedureRequest")

assertValidJsonExtractWithProfile("context.orders[0]",
"http://hl7.org/fhir/StructureDefinition/ProcedureRequest",␣

→˓response)

extractJsonAndValidateWithProfile("context.orders[0]",
"http://hl7.org/fhir/StructureDefinition/ProcedureRequest",␣

→˓response)

9.8.4.8 Request Method

The following assertions can be performed on request variable offered by the Touchstone Rules-Engine.

They would validate the request method. These assertions would make sense in Peer-to-Peer testing.

• assertRequestMethodEquals(expectedValue)
– Asserts that the method of the request matches the provided expectedValue

– Example:

request.assertRequestMethodEquals("GET")

– Equivalent to these:

assertRequestMethodEquals("GET", request)

// expected method and operator can be passed as parameters from test␣
→˓script.
assertRequestMethod("GET", "equals", request)

274 Chapter 9. TestScript Authoring

http://goessner.net/articles/JsonPath/
/touchstone/userguide/html/client-testing/index.html

Touchstone Documentation, Release 6.2.1

assert request.getMethod()=="GET": "The actual value \""+request.
→˓getMethod()+"\" did not

match the expected value \"GET\" for HTTP method in request"

assert equals("GET", request.getMethod()): "The actual value \""+request.
→˓getMethod()+"\"

did not match the expected value \"GET\" for HTTP method in request"

• assertRequestMethodNotEquals(expectedValue)
– Asserts that the method of the request does not match the provided expectedValue

– Example:

request.assertRequestMethodNotEquals("PUT")

– Equivalent to these:

assertRequestMethodNotEquals("PUT", request)

// expected method and operator can be passed as parameters from test␣
→˓script.
assertRequestMethod("PUT", "notEquals", request)

assert request.getMethod()!="PUT": "The actual value \""+request.
→˓getMethod()+"\" matched

the expected value \"PUT\" for HTTP method with operator 'notEquals'␣
→˓in request"

assert notEquals("PUT", request.getMethod()): "The actual value \"
→˓"+request.getMethod()

+"\" matched the expected value \"PUT\" for HTTP method with operator
→˓'notEquals'

in request"

• assertRequestMethodIn(expectedValues)
– Asserts that the method of the request is one of the provided expectedValues where each value is separated

by a comma.

– Example:

request.assertRequestMethodIn("POST, PUT")

– Equivalent to these:

assertRequestMethodIn("POST, PUT", request)

// expected method and operator can be passed as parameters from test␣
→˓script.
assertRequestMethod("POST, PUT", "in", request)

9.8. Rule Authoring 275

Touchstone Documentation, Release 6.2.1

assert request.getMethod() in ["GET, PUT"]: "Expected one of the values␣
→˓in [GET, PUT] for

HTTP method but encountered \""+request.getMethod()+"\" in request"

assert isIn("GET, PUT", request.getMethod()): "Expected one of the␣
→˓values in [GET, PUT] for

HTTP method but encountered \""+request.getMethod()+"\" in request"

• assertRequestMethodNotIn(expectedValues)
– Asserts that the method of the request is none of the provided expectedValues where each value is separated

by a comma.

– Example:

request.assertRequestMethodNotIn("POST, PUT")

– Equivalent to these:

assertRequestMethodNotIn("POST, PUT", request)

// expected method and operator can be passed as parameters from test␣
→˓script.
assertRequestMethod("POST, PUT", "notIn", request)

assert !(request.getMethod() in ["POST", "PUT"]): "Expected none of the␣
→˓values in [POST, PUT] for

HTTP method but encountered \""+request.getMethod()+"\" with operator
→˓'notIn' in request"

assert isNotIn("POST, PUT", request.getMethod()): "Expected none of the␣
→˓values in [POST, PUT] for

HTTP method but encountered \""+request.getMethod()+"\" with operator
→˓'notIn' in request"

9.8.4.9 Request URL

The following assertions can be performed on request variable offered by the Touchstone Rules-Engine.

They would validate the request URL. These assertions would make sense in Peer-to-Peer testing.

• assertRequestURLEquals(expectedValue)
– Asserts that the URL of the request matches the provided expectedValue

– Example:

request.assertRequestURLEquals("http://touchstone.aegis.net:57084/fhir3-
→˓0-1/Patient?name=Connectathon15")

– Equivalent to these:

assertRequestURLEquals("http://touchstone.aegis.net:57084/fhir3-0-1/
→˓Patient?name=Connectathon15", request)

276 Chapter 9. TestScript Authoring

/touchstone/userguide/html/client-testing/index.html

Touchstone Documentation, Release 6.2.1

// expected URL and operator can be passed as parameters from test␣
→˓script.
assertRequestURL("http://touchstone.aegis.net:57084/fhir3-0-1/Patient?
→˓name=Connectathon15",

"equals", request)

assert request.getURL()=="http://touchstone.aegis.net:57084/fhir3-0-1/
→˓Patient?name=Connectathon15": "The

actual value \""+request.getURL()+"\" did not match the expected value
\"http://touchstone.aegis.net:57084/fhir3-0-1/Patient?

→˓name=Connectathon15\" for URL in request"

assert equals("http://touchstone.aegis.net:57084/fhir3-0-1/Patient?
→˓name=Connectathon15",

request.getURL()): "The actual value \""+request.getURL()+"\" did not␣
→˓match the expected value

\"http://touchstone.aegis.net:57084/fhir3-0-1/Patient?
→˓name=Connectathon15\" for URL in request"

• assertRequestURLNotEquals(expectedValue)
– Asserts that the URL of the request does not match the provided expectedValue

– Example:

request.assertRequestURLNotEquals(
"http://touchstone.aegis.net:57084/fhir3-0-1/Patient?

→˓name=Connectathon15")

– Equivalent to these:

assertRequestURLNotEquals("http://touchstone.aegis.net:57084/fhir3-0-1/
→˓Patient?name=Connectathon15",

request)

// expected URL and operator can be passed as parameters from test␣
→˓script.
assertRequestURL("http://touchstone.aegis.net:57084/fhir3-0-1/Patient?
→˓name=Connectathon15",

"notEquals", request)

assert request.getURL()=="http://touchstone.aegis.net:57084/fhir3-0-1/
→˓Patient?name=Connectathon15":

"The actual value \""+request.getURL()+"\" matched the expected value
\"http://touchstone.aegis.net:57084/fhir3-0-1/Patient?

→˓name=Connectathon15\" for URL with
operator 'notEquals' in request"

assert notEquals("http://touchstone.aegis.net:57084/fhir3-0-1/Patient?
→˓name=Connectathon15",

request.getURL()): "The actual value \""+request.getURL()+"\" matched␣
→˓the expected value

\"http://touchstone.aegis.net:57084/fhir3-0-1/Patient?
→˓name=Connectathon15\" for URL with (continues on next page)

9.8. Rule Authoring 277

Touchstone Documentation, Release 6.2.1

(continued from previous page)

operator 'notEquals' in request"

• assertRequestURLContains(expectedValue)
– Asserts that the URL of the request contains the provided expectedValue

– Example:

request.assertRequestURLContains("fhir3-0-1/Patient?name=Connectathon15")

– Equivalent to these:

assertRequestURLContains("fhir3-0-1/Patient?name=Connectathon15",␣
→˓request)

// expected URL and operator can be passed as parameters from test␣
→˓script.
assertRequestURL("fhir3-0-1/Patient?name=Connectathon15", "contains",␣
→˓request)

assert request.getURL().contains("fhir3-0-1/Patient?name=Connectathon15
→˓"): "The actual value

\""+request.getURL()+"\" did not contain the expected value
\"fhir3-0-1/Patient?name=Connectathon15\" for URL in request"

assert contains("fhir3-0-1/Patient?name=Connectathon15", request.
→˓getURL()): "The actual value

\""+request.getURL()+"\" did not contain the expected value
\"fhir3-0-1/Patient?name=Connectathon15\" for URL in request"

• assertRequestURLNotContains(expectedValue)
– Asserts that the URL of the request does not contain the provided expectedValue

– Example:

request.assertRequestURLNotContains("fhir3-0-1/Patient?
→˓name=Connectathon15")

– Equivalent to these:

assertRequestURLNotContains("fhir3-0-1/Patient?name=Connectathon15",␣
→˓request)

// expected URL and operator can be passed as parameters from test␣
→˓script.
assertRequestURL("fhir3-0-1/Patient?name=Connectathon15", "notContains",␣
→˓request)

assert !request.getURL().contains("fhir3-0-1/Patient?name=Connectathon15
→˓"): "The actual value

\""+request.getURL()+"\" contained the expected value \"fhir3-0-1/
→˓Patient?name=Connectathon15\"

for URL with operator 'notContains' in request"

278 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

assert notContains("fhir3-0-1/Patient?name=Connectathon15", request.
→˓getURL()): "The actual value

\""+request.getURL()+"\" contained the expected value \"fhir3-0-1/
→˓Patient?name=Connectathon15\"

for URL with operator 'notContains' in request"

9.8.4.9.1 Request URL Prefixes

The expectedValue in requestURL can be prefixed for fine-grained assertion of individual parts of the URL.

9.8. Rule Authoring 279

Touchstone Documentation, Release 6.2.1

Prefix Description Operators Example

schemeHostPortPath: Validates the scheme,
host, port, and path.

equals, notEquals “schemeHostPortPath:
http://hostname:11111/fhirSys1”

contains, notContains “schemeHostPortPath:
http://hostname:11111/fhir”

schemeHostPort: Validates the scheme,
host, and port.

equals, notEquals “schemeHostPort:
http://hostname:11111”

contains, notContains “schemeHostPort:
http://hostname:111”

schemeHost: Validates the scheme and
host.

equals, notEquals “schemeHost:
http://hostname”

contains, notContains “schemeHost: http://hos”

scheme: Validates the scheme. equals, notEquals “scheme: https”

contains, notContains “scheme: http”

hostPortPath: Validates the host, port,
and path.

equals, notEquals “hostPortPath:
hostname:11111/fhir”

contains, notContains “hostPortPath:
hostname:111”

hostPort: Validates the host and
port.

equals, notEquals “hostPort:
hostname:11111”

contains, notContains “hostPort: hostname:1”

host: Validates the host. equals, notEquals “host: hostname”

contains, notContains “host: hostna”

path: Validates the path portion
of the URL.

equals, notEquals “path: /fhir”

contains, notContains “path: /fhi”

empty, notEmpty “path:”

query: Validates the query
portion in the URL.

equals, notEquals “query:
?family=Chalmers&birthDate=1973-
12-01”

contains, notContains “query:
?family=Chalm&birthDate=1973-
12”

empty, notEmpty “query: ?”

queryParam: Validates a single query
parameter.

equals, notEquals “queryParam:
?family=Chalmers”

contains, notContains “queryParam:
?birthDate=1973-12”

empty, notEmpty “queryParam: ?family”

280 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

9.8.4.10 Resource

The following assertions can be performed on request and response variables offered by the Touchstone Rules-
Engine.

They would validate the resource type within the payload.

• assertResourceEquals(expectedValue)
– Asserts that the resource type of the payload matches the provided expectedValue

– Example:

response.assertResourceEquals("Bundle")

– Equivalent to these:

assertResourceEquals("Bundle", response)

// expected resource type and operator can be passed as parameters from␣
→˓test script.
assertResource("Bundle", "equals", response)

assert response.resource=="Bundle": "The actual value \""+response.
→˓resource

+"\" did not match the expected value \"Bundle\" for resource type in␣
→˓response"

assert equals("Bundle", response.resource): "The actual value \"
→˓"+response.resource

+"\" did not match the expected value \"Bundle\" for resource type in␣
→˓response"

• assertResourceNotEquals(expectedValue)
– Asserts that the resource type of the payload does not match the provided expectedValue

– Example:

response.assertResourceNotEquals("Patient")

– Equivalent to these:

assertResourceNotEquals("Patient", response)

// expected resource type and operator can be passed as parameters from␣
→˓test script.
assertResource("Patient", "notEquals", response)

assert response.resource!="Patient": "The actual value \""+response.
→˓resource +"\" matched

the expected value \"Patient\" for resource type with operator
→˓'notEquals' in response"

9.8. Rule Authoring 281

Touchstone Documentation, Release 6.2.1

assert notEquals("Patient", response.resource): "The actual value \"
→˓"+response.resource

+"\" matched the expected value \"Patient\" for resource type with␣
→˓operator 'notEquals' in response"

• assertResourceIn(expectedValues)
– Asserts that the resource type of the payload is one of the provided expectedValues where each value is

separated by a comma.

– Example:

response.assertResourceIn("Bundle, Patient")

– Equivalent to these:

assertResourceIn("Bundle, Patient", response)

// expected resource type and operator can be passed as parameters from␣
→˓test script.
assertResource("Bundle, Patient", "in", response)

assert response.resource in ["Bundle", "Patient"]: "Expected one of the␣
→˓values in

[Bundle, Patient] for resource type but encountered \""+response.
→˓resource+"\" in response"

assert isIn("Bundle, Patient", response.resource): "Expected one of the␣
→˓values in

[Bundle, Patient] for resource type but encountered \""+response.
→˓resource+"\"

in response"

• assertResourceNotIn(expectedValues)
– Asserts that the resource type of the payload is none of the provided expectedValues where each value is

separated by a comma.

– Example:

response.assertResourceNotIn("Bundle, Patient")

– Equivalent to these:

assertResourceNotIn("Bundle, Patient", response)

// expected resource type and operator can be passed as parameters from␣
→˓test script.
assertResource("Bundle, Patient", "notIn", response)

assert !(response.resource in ["Bundle", "Patient"]): "Expected none of␣
→˓the values in

[Bundle, Patient] for resource type but encountered \""+response.
→˓resource+"\" with

operator 'notIn' in response"

282 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

assert isNotIn("Bundle, Patient", response.resource): "Expected none of␣
→˓the values in

[Bundle, Patient] for resource type but encountered \""+response.
→˓resource+"\"

with operator 'notIn' in response"

9.8.4.11 Response Code

The following assertions can be performed on response variable offered by the Touchstone Rules-Engine.

They would validate the response status code. See Status Code Definitions and List of HTTP status codes.

• assertResponseCodeEquals(expectedValue)
– Asserts that the status code of the response matches the provided expectedValue

– Example:

response.assertResponseCodeEquals(200)

– Equivalent to these:

assertResponseCodeEquals(200, response)

// expected status code and operator can be passed as parameters from␣
→˓test script.
assertResponseCode(200, "equals", response)

assert response.responseCodeInt==200: "The actual value \""+response.
→˓responseCodeInt+"\"

did not match the expected value \"200\" for response code in response
→˓"

assert equals(200, response.responseCode): "The actual value \"
→˓"+response.responseCode+"\"

did not match the expected value \"200\" for response code in response
→˓"

assert equals(200, responseCode): "The actual value \""+responseCode+"\"
did not match the expected value \"200\" for response code in response

→˓"

Note that in the last example above, we’re using the responseCode binding directly. See Bindings.

• assertResponseCodeNotEquals(expectedValue)
– Asserts that the status code of the response does not match the provided expectedValue

– Example:

response.assertResponseCodeNotEquals(200)

– Equivalent to these:

9.8. Rule Authoring 283

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
/touchstone/userguide/html/testscript-authoring/rule-authoring/basics.html#bindings

Touchstone Documentation, Release 6.2.1

assertResponseCodeNotEquals(200, response)

// expected status code and operator can be passed as parameters from␣
→˓test script.
assertResponseCode(200, "notEquals", response)

assert response.responseCodeInt==200: "The actual value \""+response.
→˓responseCodeInt+"\"

matched the expected value \"200\" for response code with operator
→˓'notEquals' in response"

assert notEquals(200, response.responseCode): "The actual value \"
→˓"+response.responseCode+"\"

matched the expected value \"200\" for response code with operator
→˓'notEquals' in response"

assert notEquals(200, responseCode): "The actual value \""+response.
→˓responseCode+"\"

matched the expected value \"200\" for response code with operator
→˓'notEquals' in response"

• assertResponseCodeGreaterThan(expectedValue)
– Asserts that the status code of the response is greater than the provided expectedValue

– Example:

response.assertResponseCodeGreaterThan(399)

– Equivalent to each of these:

∗ assertResponseCodeGreaterThan(399, response)

// expected status code and operator can be passed as parameters from test␣
→˓script.
assertResponseCode(399, "greaterThan", response)

∗ assert response.responseCodeInt > 399: "Expected response code to be␣
→˓greater than 399 but was

"+response.responseCodeInt+" in response"

∗ assert greaterThan(399, response.responseCode) : "Expected response code to␣
→˓be greater than 399

but was "+response.responseCode+" in response"

• assertResponseCodeLessThan(expectedValue)
– Asserts that the status code of the response is less than the provided expectedValue

– Example:

response.assertResponseCodeLessThan(300)

– Equivalent to each of these:

284 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

∗ assertResponseCodeLessThan(300, response)

// expected status code and operator can be passed as parameters from test␣
→˓script.
assertResponseCode(300, "lessThan", response)

∗ assert response.responseCodeInt < 300: "Expected response code to be less␣
→˓than 300 but was

"+response.responseCodeInt+" in response"

∗ assert lessThan(300, response.responseCode) : "Expected response code to be␣
→˓less than 300

but was "+response.responseCode+" in response"

• assertResponseCodeIn(expectedValues)
– Asserts that the status code of the response is one of the provided expectedValues where each value is

separated by a comma.

– Example:

// Asserts that the response code is either 200 or 201
response.assertResponseCodeIn("200,201")

– Equivalent to each of these:

∗ assertResponseCodeIn("200,201", response)

// expected status code and operator can be passed as parameters from test␣
→˓script.
assertResponseCode("200,201", "in", response)

∗ assert isIn("200,201", response.responseCode): "Expected one of the values␣
→˓in [200, 201]

for response code but encountered \""+response.responseCode+"\" in␣
→˓response"

• assertResponseCodeNotIn(expectedValues)
– Asserts that the status code of the response is none of the provided expectedValues where each value is

separated by a comma.

– Example:

// Asserts that the response code is neither 200 nor 201
response.assertResponseCodeNotIn("200,201")

– Equivalent to each of these:

∗ assertResponseCodeNotIn("200,201", response)

// expected status code and operator can be passed as parameters from test␣
→˓script.
assertResponseCode("200,201", "notIn", response)

9.8. Rule Authoring 285

Touchstone Documentation, Release 6.2.1

∗ assert isNotIn("200,201", response.responseCode): "Expected none of the␣
→˓values in [200, 201]

for response code but encountered \""+response.responseCode+"\" with␣
→˓operator 'notIn' in response"

9.8.5 Short-circuiting

Rather than relying on the Rule API assertions to raise errors and skips with pre-defined messages, you can cause
the rule execution to stop at any point based on certain conditions in your custom rule definitions. The message you
construct will be displayed to end-user on the UI.

9.8.5.1 Failing

You can cause an assertion to fail with an arbitrary failure message using the following call:

• fail(arbitrary message)
Rule execution will stop at the point where this call is placed. The value provided in arbitrary message will be shown
on the UI as the assertion failure message.

9.8.5.2 Warning

You can cause an assertion to stop with an arbitrary warning message using the following call:

• warn(arbitrary message)
Rule execution will stop at the point where this call is placed. The value provided in arbitrary message will be shown
on the UI as the assertion warning message. Note that the test script execution will be marked as Passed with
warning(s) in this case (provided no failures took place).

286 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

9.8.5.3 Skipping

You can cause an assertion to skip with an arbitrary message using the following call:

• skip(arbitrary message)
Rule execution will stop at the point where this call is placed. The value provided in arbitrary message will be shown
on the UI as the assertion skipped message. Note that the test script execution will be marked as Skipped in this case
(provided no failures took place).

9.8. Rule Authoring 287

Touchstone Documentation, Release 6.2.1

288 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

9.8.6 Multiple Assertions

This section covers how assertions can be performed on multiple requests and responses and reporting all of the asser-
tion failures and warnings.

9.8.6.1 Short-circuiting when a request or response assertion fails

This is the behavior that has been covered extensively in Rule API.

To grab the last response in TestScript Execution and perform an assertion on the response code, for example, we can
use the following construct:

response.assertResponseCodeEquals(200)

To perform assertion on a response in TestScript Execution other than last response (e.g. one that was received upstream
in another test), we could first grab the response from responses as such:

def createResponse = responses.get('create-read-response');

The responseId ‘create-read-response’ in the example above would have been specified by the TestScript author in
the TestScript operation definition and would be shown on the TestScript Execution screen:

A series of assertions could then be performed using the Rule API:

createResponse.assertResourceEquals("Bundle")
assert createResponse.header("Content-Type").contains("json") || createResponse.header(
→˓"Content-Type").contains("xml"): "The actual value \""+response.header('Content-Type')?
→˓.value +"\" did not contain the expected value \"json\" or \"xml\" for 'Content-Type'␣
→˓header in response."
createResponse.assertResponseCodeEquals(200)
createResponse.assertBodyNotEmpty()
createResponse.assertValidWithProfile("http://hl7.org/fhir/StructureDefinition/Bundle")

9.8. Rule Authoring 289

/touchstone/userguide/html/testscript-authoring/rule-authoring/basics.html#bindings
/touchstone/userguide/html/testscript-authoring/rule-authoring/basics.html#bindings
/touchstone/userguide/html/testscript-authoring/rule-authoring/reference/index.html
/touchstone/userguide/html/testscript-authoring/rule-authoring/basics.html#bindings
/touchstone/userguide/html/testscript-authoring/rule-authoring/reference/index.html

Touchstone Documentation, Release 6.2.1

The rule execution will fail on the first assertion failure. This is good in that we wouldn’t want assertValidWithProfile
to be performed if assertBodyNotEmpty failed, for example.

If we wanted to perform assertions on multiple requests and responses and wanted the assertion failures to be reported
on all of the requests and responses, then the above approach would not work as rule-execution would stop on the first
request or response assertion failure.

9.8.6.2 Continuing rule-execution when a request or response assertion fails

If multiple assertions are performed in a rule (e.g. on all search responses) and one of the assertions fail, then subsequent
assertions are not performed. To perform all the assertions, the rule author must catch the assertion failure and register
the error with the rules-engine before proceeding with the other assertions. Touchstone will fail the overall rule assertion
if one or more assertions fail and will consolidate all the assertion failure messages into one message.

Here’s an example that demonstrates how to perform assertions on multple responses without short-circuiting on any
given response assertion failure:

responses.each() { responseEntry ->
def responseId = responseEntry.key
if (responseId.startsWith("search-response")) { // The prefix can be passed as a rule␣

→˓parameter from the test script
try {
def response = responseEntry.value

logger.info("Validating Resource in "+responseId)
response.assertResourceEquals("Bundle")

logger.info("Validating Content-Type in "+responseId)
assert response.header("Content-Type").contains("json") || response.header(

→˓"Content-Type").contains("xml"): "The actual value \""+response.header('Content-Type')?
→˓.value +"\" did not contain the expected value \"json\" or \"xml\" for 'Content-Type'␣
→˓header in response."

logger.info("Validating Response Code in "+responseId)
response.assertResponseCodeEquals(200)

logger.info("Validating Body in in "+responseId)
response.assertBodyNotEmpty()

logger.info("Validating Resource in "+responseId+"\n")
response.assertValidWithProfile("http://hl7.org/fhir/StructureDefinition/Bundle

→˓")
} catch (Throwable e) {

errorsAndWarnings.registerAndContinue(e);
}

}
}

Notice how we’re iterating through the responses and registering any assertion errors with the Rules Engine using
errorsAndWarnings.registerAndContinue(e);, and then proceeding with assertions on the next response.

The log messages will be accessible on TestScript Execution screen within the assertion Log Output link:

290 Chapter 9. TestScript Authoring

/touchstone/userguide/html/testscript-authoring/rule-authoring/basics.html#bindings

Touchstone Documentation, Release 6.2.1

Note: When writing rules that act on requests and responses other than the last one in the
TestScript Execution, it’s best to set sourceId to ‘none’ in the assertion rule definition. The
sourceId can be left out if the rule were operating on the last request or response.

9.8.7 Rule Outputs

Groovy rules can produce documents or text, and place them in the running execution for somesequent assertions and
operations to act upon them.

Here is an example of a testscript rule that produces rule outputs:

9.8. Rule Authoring 291

Touchstone Documentation, Release 6.2.1

In the example above, the rule-ouput oauth2GetTokenResponse1-id-token-header is defined to produce a document
of type JSON while the rule oauth2GetTokenResponse1-id-token-payload-iss produces the default text/string type.

Within the Groovy rule (below), a JSON document is constructed and placed in the output binding under the
oauth2GetTokenResponse1-id-token-header key (or Rule Output Id). This id can then be used as the value of
sourceId in downstream operations and assertions. The output oauth2GetTokenResponse1-id-token-payload-iss, on
the other hand, is populated as a text/string value and can be acted upon using string operators like notEmpty and
equals.

292 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

9.8.7.1 Assertions on one Rule Output

As mentioned in the earlier section, rule outputs can become the sourceId or variable of common testscript assertions.
Alternatively, a rule output can be grabbed by its rule output id:

def idTokenHeaderDoc = ruleOutputs.get('oauth2GetTokenResponse1-id-token-header')

def idTokenHeaderIssValue = ruleOutputs.get('oauth2GetTokenResponse1-id-token-payload-iss
→˓')

A series of assertions could then be performed using the Rule API:

idTokenHeaderDoc.assertBodyNotEmpty()
idTokenHeaderDoc.assertJsonPathContains("iss", "theValue")

assert !idTokenHeaderIssValue.is(null): "Expected oauth2GetTokenResponse1-id-token-
→˓payload-iss to be set"

If we wanted to perform assertions on multiple rule outputs and wanted the assertion failures to be reported on all of the
rule outputs, then the above approach would not work as rule-execution would stop on the first rule outputs assertion
failure.

9.8. Rule Authoring 293

/touchstone/userguide/html/testscript-authoring/rule-authoring/reference/index.html

Touchstone Documentation, Release 6.2.1

9.8.7.2 Assertions on multiple Rule Outputs

If multiple assertions are performed in a rule (e.g. on all rule outputs) and one of the assertions fail, then subsequent
assertions are not performed. To perform all the assertions, the rule author must catch the assertion failure and register
the error with the rules-engine before proceeding with the other assertions. Touchstone will fail the overall rule assertion
if one or more assertions fail and will consolidate all the assertion failure messages into one message.

Here’s an example that demonstrates how to perform assertions on multple rule outputs without short-circuiting on any
given rule output assertion failure:

ruleOutputs.each() { ruleOutputEntry ->
def ruleOutputId = ruleOutputEntry.key
if (ruleOutputId.startsWith("oauth2GetToken")) { // The prefix can be passed as a␣

→˓rule parameter from the test script
try {
def idTokenHeaderDoc = ruleOutputEntry.value

logger.info("Validating "+ruleOutputId)
idTokenHeaderDoc.assertBodyNotEmpty()
idTokenHeaderDoc.assertJsonPathContains("iss", "theValue")

} catch (Throwable e) {
errorsAndWarnings.registerAndContinue(e);

}
}

}

Notice how we’re iterating through the ruleOutputs and registering any assertion errors with the Rules Engine using
errorsAndWarnings.registerAndContinue(e);, and then proceeding with assertions on the next rule output.

9.8.7.3 Rule Output when outputting a Fixture

First, the Rule output when outputting a fixture and not a variable needs to set up the ‘output’ extension like so:

<action>
<assert>

<extension url="http://touchstone.aegis.net/touchstone/fhir/testing/
→˓StructureDefinition/testscript-assert-rule">

<extension url="ruleId">
<valueId value="{rule Id}"/>

</extension>

<extension url="output">
<extension url="name">

<valueString value="{name of the output fixture -
→˓ Example - ruleOutputFile}"/>

</extension>
<extension url="type">

<valueString value="document"/>
</extension>
<extension url="contentType">

(continues on next page)

294 Chapter 9. TestScript Authoring

/touchstone/userguide/html/testscript-authoring/rule-authoring/basics.html#bindings

Touchstone Documentation, Release 6.2.1

(continued from previous page)

<valueString value="{format of the fixture, i.e.␣
→˓json or xml}"/>

</extension>
</extension>

</extension>
<description value="Full Description here" />
<sourceId value="none"/>
<warningOnly value="false" />

</assert>
</action>

The output fixture can then be accessed in a assert by using assert.sourceId like so:

<action>
<assert>

<extension url="http://touchstone.aegis.net/touchstone/fhir/testing/
→˓StructureDefinition/testscript-assert-stopTestOnFail">

<valueBoolean value="false" />
</extension>
<description value="Full Description here"/>
<expression value="Bundle.type = 'batch'"/>
<sourceId value="ruleOutputFile" />
<warningOnly value="false"/>

</assert>
</action>

Any Rule Output Fixture, once populated, can be referenced by the ‘name’ extension value like any other static/dynamic
fixture id.

And can be used in a Operation like normal:

<action>
<operation>

<type>
<system value="http://touchstone.com/fhir/testscript-operation-

→˓codes-extended"/>
<code value="process-message"/>

</type>
<description value="Full Description here"/>
<accept value="json"/>
<contentType value="json"/>
<encodeRequestUrl value="true"/>
<params value="/$validate"/>
<sourceId value="ruleOutputFile"/>

</operation>
</action>

Note: you may find this rule helpful.

9.8. Rule Authoring 295

/touchstone/rule?name=%2fFHIRCommon%2f_reference%2frule%2fDecodeIdToken.groovy&version=1&latestVersion=1&ruleType=RULE_GROOVY

Touchstone Documentation, Release 6.2.1

9.8.8 XSLT and Schematron

Unless you plan on executing test scripts against a test system that only supports XML, it is highly recommended to
write rules in Groovy as XSLT and Schematron rules can only be evaluated against requests and responses whose
content is in XML while Groovy supports JSON as well.

9.8.8.1 Declarations

Below is the syntax for defining summary, description, and parameters in XSLT and Schematron. Please refer to
Parameters for more information on how to supply parameters in test script.

Notice that the syntax is the same as that in Groovy. Only the comment characters are different. Instead of using /*
and */, we’re using the XML comment characters <!-- and -->

<!--
rule.summary=Response '${param.header}' header cannot be empty
rule.description=Validates the '${param.header}' header in the response
rule.param.header.required=true

-->

9.8.8.2 Header assertions

Suppose you wanted to check the ‘Content-Type’ header in the response and compare it to an expected value passed as
a parameter from the test script.

Below is the same logic coded in three formats for comparison:

9.8.8.2.1 Groovy

/*
rule.summary=Response Content-Type header must be ${expectedContentType}.
rule.description=Validates the content type of the response
rule.param.expectedContentType.required=true

*/
assert !param.expectedContentType.is(null): "The parameter 'expectedContentType' was not␣
→˓supplied"
assert !responseHeaders.header['Content-Type'].isEmpty(): "Could not find 'Content-Type'␣
→˓header"
assert responseHeaders.header['Content-Type'].containsIgnoreCase(param.
→˓expectedContentType):

"Expected Content-Type '"+ param.expectedContentType+"' did not match actual Content-
→˓Type '"

+ responseHeaders.header['Content-Type']+"'"

296 Chapter 9. TestScript Authoring

/touchstone/userguide/html/testscript-authoring/rule-authoring/parameters.html

Touchstone Documentation, Release 6.2.1

9.8.8.2.2 XSLT

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xsl:stylesheet xmlns:xhtml="http://www.w3.org/1999/xhtml" xmlns:xsl="http://www.w3.org/
→˓1999/XSL/Transform"

xmlns:saxon="http://saxon.sf.net/" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:f="http://hl7.org/fhir" xmlns:t=

→˓"http://touchstone.aegis.net/"
version="2.0">

<!--
rule.summary=Response Content-Type header must be ${expectedContentType}.
rule.description=Validates the content type of the response
rule.param.expectedContentType.required=true

-->
<xsl:output method="xml" omit-xml-declaration="no" standalone="yes" indent="yes" />
<xsl:param name="param" />
<xsl:param name="headers" />
<xsl:template match="/">
<t:validationresult>
<xsl:choose>
<xsl:when test="$param">
<xsl:choose>
<xsl:when test="$headers"> <!-- You can also use 'responseHeaders' or

→˓'requestHeaders'.
The right one will be supplied in place of headers␣

→˓depending on direction -->
<xsl:choose>
<xsl:when test="$param/expectedContentType and $param/

→˓expectedContentType/text()">
<xsl:choose>
<xsl:when test="$headers/Content-Type">
<xsl:choose>
<xsl:when test="contains(lower-case($headers/Content-

→˓Type/text()),
lower-case($param/expectedContentType))" />

<xsl:otherwise>
<t:error>Expected Content-Type '<xsl:value-of

select="$param/expectedContentType" />'
did not match actual Content-Type '<xsl:value-

→˓of
select="$headers/Content-Type" />'.</t:error>

</xsl:otherwise>
</xsl:choose>

</xsl:when>
<xsl:otherwise>
<t:error>Could not find 'Content-Type' header.</t:error>

</xsl:otherwise>
</xsl:choose>

</xsl:when>
<xsl:otherwise>
<t:error>The parameter 'expectedContentType' was not supplied.

→˓</t:error>
(continues on next page)

9.8. Rule Authoring 297

Touchstone Documentation, Release 6.2.1

(continued from previous page)

</xsl:otherwise>
</xsl:choose>

</xsl:when>
<xsl:otherwise>
<t:error>The headers were not supplied.</t:error>

</xsl:otherwise>
</xsl:choose>

</xsl:when>
<xsl:otherwise>
<t:error>The parameters were not supplied.</t:error>

</xsl:otherwise>
</xsl:choose>

</t:validationresult>
</xsl:template>

</xsl:stylesheet>

9.8.8.2.3 Schematron

<?xml version="1.0" encoding="UTF-8"?>
<sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron" queryBinding="xslt2"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<sch:ns prefix="f" uri="http://hl7.org/fhir"/>
<sch:ns prefix="h" uri="http://www.w3.org/1999/xhtml"/>

<!--
rule.summary=Response Content-Type header must be ${expectedContentType}.
rule.description=Validates the content type of the response
rule.param.expectedContentType.required=true

-->
<xsl:param name="param" />
<xsl:param name="headers" /> <!-- You can also use 'responseHeaders' or

→˓'requestHeaders'.
The right one will be supplied in place of headers depending on␣

→˓direction -->
<sch:pattern>
<sch:title>RuleContentType</sch:title>
<sch:rule context="/">
<sch:assert test="$param">The parameters were not supplied.</sch:assert>
<sch:assert test="$headers">The headers were not supplied.</sch:assert>
<sch:assert test="$param/expectedContentType">The parameter 'expectedContentType'␣

→˓was not supplied.
</sch:assert>

<sch:assert test="$param/expectedContentType/text()">The parameter
→˓'expectedContentType' was not

supplied.</sch:assert>
<sch:assert test="$headers/Content-Type">Could not find 'Content-Type' header.</

→˓sch:assert>
<sch:assert test="contains(lower-case($headers/Content-Type/text()), lower-case(

→˓$param/expectedContentType))">
Expected Content-Type '<xsl:value-of select="$param/expectedContentType"/>'␣

→˓did not match actual (continues on next page)

298 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

(continued from previous page)

Content-Type '<xsl:value-of select="$headers/Content-Type"/>'.</sch:assert>
</sch:rule>

</sch:pattern>
</sch:schema>

9.8.8.3 Payload assertions

Suppose you wanted to determine the FHIR resource within the response and compare it to an expected value passed
as a parameter from the test script.

Below is the same logic coded in three formats for comparison:

9.8.8.3.1 Groovy

/*
rule.summary=Response resource must be ${expectedResource}.
rule.description=Validates the type of the resource in the response.
rule.param.expectedResource.required=true
*/
assert response.resource==${param.expectedResource}: "Expected resource '"

+param.expectedResource +"' did not match actual resource '"+response.resource+"'"

9.8.8.3.2 XSLT

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xsl:stylesheet xmlns:xhtml="http://www.w3.org/1999/xhtml" xmlns:xsl="http://www.w3.org/
→˓1999/XSL/Transform"

xmlns:saxon="http://saxon.sf.net/" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:f="http://hl7.org/fhir"

xmlns:t="http://touchstone.aegis.net/" version="2.0">

<!--
rule.summary=Response resource must be ${expectedResource}.
rule.description=Validates the type of the resource in the response.
rule.param.expectedResource.required=true
-->
<xsl:output method="xml" omit-xml-declaration="no" standalone="yes" indent="yes" />
<xsl:param name="param" />
<xsl:template match="/">
<t:validationresult>
<xsl:choose>
<xsl:when test="$param">
<xsl:choose>
<xsl:when test="$param/expectedResource and $param/expectedResource/

→˓text()">
<xsl:choose>
<xsl:when test="*[1]/name()=$param/expectedResource" />
<xsl:otherwise>

(continues on next page)

9.8. Rule Authoring 299

http://build.fhir.org/resourcelist.html

Touchstone Documentation, Release 6.2.1

(continued from previous page)

<t:error>Expected resource '<xsl:value-of select="$param/
→˓expectedResource"/>'

did not match actual resource '<xsl:value-of select="*[1]/
→˓name()"/>'.</t:error>

</xsl:otherwise>
</xsl:choose>

</xsl:when>
<xsl:otherwise>
<t:error>The parameter 'expectedResource' was not supplied.</

→˓t:error>
</xsl:otherwise>

</xsl:choose>
</xsl:when>
<xsl:otherwise>
<t:error>The parameters were not supplied.</t:error>

</xsl:otherwise>
</xsl:choose>

</t:validationresult>
</xsl:template>

</xsl:stylesheet>

9.8.8.3.3 Schematron

<?xml version="1.0" encoding="UTF-8"?>
<sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron" queryBinding="xslt2"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<sch:ns prefix="f" uri="http://hl7.org/fhir"/>
<sch:ns prefix="h" uri="http://www.w3.org/1999/xhtml"/>

<!--
rule.summary=Response resource must be ${expectedResource}.
rule.description=Validates the type of the resource in the response.
rule.param.expectedResource.required=true
-->

<xsl:param name="param" />
<sch:pattern>
<sch:title>RuleResource</sch:title>
<sch:rule context="/">
<sch:assert test="$param">The parameters were not supplied.</sch:assert>
<sch:assert test="$param/expectedResource">The parameter 'expectedBundleResource'

was not supplied.</sch:assert>
<sch:assert test="*[1]/name()=$param/expectedResource">Expected resource
'<xsl:value-of select="$param/expectedResource"/>' did not match actual resource
'<xsl:value-of select="*[1]/name()"/>'.</sch:assert>

</sch:rule>
</sch:pattern>

</sch:schema>

300 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

9.9 OAuth2 Capabilities

Touchstone has the ability for a user to create and use a Test System that is OAuth2 enabled, and with that comes of
few features that are important to take note of when it comes to Test Executions performed against a Test System that
has an OAuth2 Authorization service connected to it.

9.9.1 Fixture ID’s

With the addition of a more robust OAuth2 environment into Touchstone, there are a few fixtures, and values under
those fixtures, that can be reached for test script authors.

1. One fixture is the dest1SmartConfig (dest2SmartConfig, dest3SmartConfig, etc.). The fixture allows the test
script author to access different variables coming from the JSON document that is at the .well-known/smart-
configuration.json endpoint. It acts the same as retrieving variables from the capabilities statement. For example,
to use dest1SmartConfig to retrieve the Client ID, you would use the sourceId and path in the testscript as
sourceId = dest1SmartConfig, path = $.clientId.

2. Test Systems have special Oauth2 values that can be be retrieved by test script authors. The fixtures have a
naming convention of dest1SystemConfig, dest2SystemConfig, origin1SystemConfig, origin2SystemConfig, etc.
These fixtures have the following attributes:

Fixture ID Description
name The Test System name
fullName The Organization name + the Test System name
baseUrl The Base URL of the Test System
supportsSmar-
tOnFhir

Set to true if the Test System supports SMART on FHIR, false if it does not

oauth2GrantType The Grant Type of the OAuth2 enables Test System, either Authorization Code or Client
Credentials

clientId The Client ID of the Test System that is registered with the OAuth2 server.
clientSecret The Client Secret of the Test System that is registered with the OAuth2 server.
authEndpoint The Authorization Endpoint for the Test System.
tokenEndpoint The Token Endpoint for the Test System.
registerEndpoint The Registration Endpoint for the Test System.
introspectEndpoint The Introspection Endpoint for the Test System.
revocationEndpoint The Revocation Endpoint for the Test System.
scopesSupported The scopes that allowed for the server access to certain user scopes

3. An example of using these fixtures in a test script is below:

4. Another set of fixtures that can be used by the user in the test scripts are oauth2AuthzRequest and
oauth2AuthzRedirect. These two fixtures are used to access parts the the last OAuth2 Authroization Request
sent to the OAuth2 server and the last OAuth2 Authorization response returned from the server.

9.9. OAuth2 Capabilities 301

Touchstone Documentation, Release 6.2.1

9.9.2 Base64Encoding

Touchstone is configured to use a Base64Encoding on the operation.requestHeader.value when it includes Basic + A
Single Space " " ahead of the value and when the operation.requestHeader.name is equal to Authorization in
your Testscript executions. This is done for security and is the explanation as to why an Authorization value in the
header will be different from the one that was originally coded.

9.9.3 PKCE Functionality

1. Executing SMART testcases using PKCE needs Code Verifier (which is a randomly generated string meeting a
certain requirement) and a Code Challenge (which is a string generated by hashing the Code Verifier and a Code
Challenge Method).

2. The groovy rule PKCECodeExchange.groovy under FHIRCommon can be used for generating the Code Verifier,
Code Challenge and the Code Challenge Method.

3. Steps to include PKCE information in a SMART Testcase,

a. Define an extension to include the rule PKCECodeExchange.groovy

Example:

<extension url="http://touchstone.aegis.net/touchstone/fhir/testing/
→˓StructureDefinition/testscript-rule">

<extension url="ruleId">
<valueId value="rule-fetchCodeExchange" />

</extension>
<extension url="path">

<valueString value="/FHIRCommon/_reference/rule/
→˓PKCECodeExchange.groovy" />

</extension>
</extension>

b. Create an assertion and place it before any operation that requests the authorization code

Example:

<action>
<assert>

<extension url="http://touchstone.aegis.net/touchstone/fhir/
→˓testing/StructureDefinition/testscript-assert-rule">

<extension url="ruleId">
<valueId value="rule-fetchCodeExchange" />

</extension>
<extension url="output">

<extension url="name">
<valueString value="codeChallenge" /

→˓>
</extension>

</extension>
<extension url="output">

<extension url="name">
<valueString value=

→˓"codeChallengeMethod" />
</extension>

(continues on next page)

302 Chapter 9. TestScript Authoring

Touchstone Documentation, Release 6.2.1

(continued from previous page)

</extension>
<extension url="output">

<extension url="name">
<valueString value="codeVerifier" />

</extension>
</extension>

</extension>
<extension url="http://touchstone.aegis.net/touchstone/fhir/

→˓testing/StructureDefinition/testscript-assert-stopTestOnFail">
<valueBoolean value="true" />
</extension>
<description value="Generates CodeChallenge and␣

→˓CodeVerifier." />
<warningOnly value="false" />

</assert>
</action>

c. Include the Code Challenge and Code Challenge Method to the URL under the Authorization
Request Operation

Example:

<action>
<operation>

<extension url="http://touchstone.aegis.net/touchstone/fhir/
→˓testing/StructureDefinition/testscript-operation-oauth2AuthzRequestId">

<valueId value="oauth2AuthzRequest1" />
</extension>
<extension url="http://touchstone.aegis.net/touchstone/fhir/

→˓testing/StructureDefinition/testscript-operation-oauth2AuthzRedirectId">
<valueId value="oauth2AuthzRedirect1" />

</extension>
<type>

<system value="http://touchstone.aegis.net/
→˓touchstone/fhir/testing/CodeSystem/codesystem-testscript-operation-codes"␣
→˓/>

<code value="oauth2-authorize" />
</type>
<description value="Redirect user to the authorize endpoint␣

→˓for target test system specified in smart configuration" />
<encodeRequestUrl value="true" />
<url value="${authorizeEndpoint}?client_id=$

→˓{dest1SystemConfig.clientId}&scope=${oauth2RequiredScopes}&aud=$
→˓{dest1SystemConfig.baseUrl}&code_challenge=${codeChallenge}&code_
→˓challenge_method=${codeChallengeMethod}" />

</operation>
</action>

d. Add the Code Verifier to the Access Token Request. Note: If a Fixture is used for loading the
token request parameters, update the fixture with this parameter

Example:

9.9. OAuth2 Capabilities 303

Touchstone Documentation, Release 6.2.1

grant_type=authorization_code&code=${oauth2AuthzRedirect1AuthCode}&redirect_
→˓uri=${oauth2AuthzRequest1RedirectUri}&code_verifier=${codeVerifier}

9.10 Bulk Data Capabilities

Touchstone has the ability for a user to create and use a Test System that supports the Bulk Data specification. Touch-
stone provides additional features that provide support for the evaluation and validation of the NDJSON returned files.

9.10.1 NDJSON File Evalutation and Validation

The Bulk Data specification defines a new FHIR extended operation $export which generates bulk data output files
containing multiple FHIR resources using the NDJSON format for FHIR - application/fhir+ndjson.

Evaluation and validation of this NDJSON format for FHIR requires extended capabilities be implemented on the FHIR
Test Engine and extended definitions within the FHIR TestScript resource. Touchstone has implemented these extended
capabilities through the use of NDJSON Assertion Prefix syntax within the values of the following TestScript elements:

• TestScript.profile.reference

• TestScript.test.action.assert.expression

• TestScript.test.action.assert.path

• TestScript.test.action.assert.resource

9.10.2 NDJSON Assertion Prefix

The NDJSON Assertion-Prefix is specified within the curly braces and is composed of 3 parts (highlighted in color):

{ Evaluation-Operator | Filter-Index-Range | Filter-Path} Regular-Assert. All three are optional.

Note: The use of the NDJSON Assertion Prefix syntax within the assert.resource element prevents the containing
testscript resource from validating on upload to Touchstone.

NDJSON assertions are applied in 4 stages:

1. Filter-Path evaluation. Example: .name[?(@.family==’Gracia’)] i.e. all Patients whose family-name is ‘Gracia’.
Resource is included in evaluation if JSON-PATH evaluation results to a Truthy value (exists and is not false for
our purposes). If no Filter-Path is specified then all resources filter through.

2. Filter-Index-Range. Example: 1 - 10 i.e. Include resources 1 through 10 in the assertion evaluation. If Filter-
Index-Range is not specified then all resources filter through. If Filter-Path was specified then Filter-Index-Range
operates on the resources that made it through Filter-Path evaluation and not the original resources.

3. Regular-Assert :- The Profile/Expression/Path/Resource evaluation on resources that made it past 1 and 2. Ex-
ample: Patient (if assertion is resource).

4. Evaluation-Operator (any/all). If ‘any’ operator is used then overall assertion passes if single resource passes.
Default is ‘all’.

For examples of the NDJSON Assertion Prefix syntax, visit the Touchstone Testing Implementation Guide.

304 Chapter 9. TestScript Authoring

https://hl7.org/fhir/uv/bulkdata/index.html
https://hl7.org/fhir/uv/bulkdata/export/index.html
http://ndjson.org/
https://www.hl7.org/fhir/nd-json.html
https://touchstone.aegis.net/touchstone/fhir/testing/history.html

Touchstone Documentation, Release 6.2.1

9.11 TestScript Extensions

The list of AEGIS Touchstone Testing Extensions is shown below. They can be found in our Touchstone IG.

• AEGIS Touchstone Testing TestScript Dynamic Fixture Extension

• AEGIS Touchstone Testing TestScript Rule Extension

• AEGIS Touchstone Testing TestScript Ruleset Extension

• AEGIS Touchstone Testing TestScript Assert Rule Extension

• AEGIS Touchstone Testing TestScript Assert Ruleset Extension

• AEGIS Touchstone Testing TestScript Assert Stop Test On Error Extension

• AEGIS Touchstone Testing TestScript Assert Variable Extension

• AEGIS Touchstone Testing TestScript Operation AuthorizeInNewTab Extension

• AEGIS Touchstone Testing TestScript Operation Oauth2AuthzRedirectId Extension

• AEGIS Touchstone Testing TestScript Operation Oauth2AuthzRequestId Extension

• AEGIS Touchstone Testing TestScript Operation pagesNext Extension

• AEGIS Touchstone Testing TestScript Operation SmartLaunchRequestId Extension

• AEGIS Touchstone Testing TestScript Test Manual Completion Extension

• AEGIS Touchstone Testing TestScript Variable ParamField Extension

9.12 FAQ

1. I’ve used a variable for the Accept header but Touchstone is rejecting my TestScript on upload. Touchstone only
supports variables in these TestScript.operation elements: encodeRequestUrl, params, requestHeader.value, and
url. If you need a dynamic header like Accept or ContentType you can define it manually using variables in the
Operation.requestHeader element:

<requestHeader>
<field value="Accept"/>
<value value="application/fhir+${accept}"/>

</requestHeader>

2. I want to use the validateProfileId asserts but I don’t know what IGs are supported. If your organization has a
custom validator in Touchstone refer to Updating Validators to see how to view and add validation packages to
your validator. Otherwise the list of IGs supported in the base Validators is avaliable here

3. My private authorization tokens are visible to unauthorized users. As authors of test scripts that involve autho-
rization, please test access to testscript execution data and confirm that OAuth2-sensitive data (like access tokens)
is hidden from unauthorized users. To hide OAuth2-related fixtures and rule parameters within operation and
assertion executions on Test Script Execution screen from other users, reference the fixtures (sourceId/responseId
in operation) and rule parameters with names that begin with “oauth2”, “openId”, “jwks”, “idToken”, or “ac-
cessToken” as appropriate. Touchstone will hide the data from everyone except the executor of the test execution
when the prefixes (listed above) are used.

4. I am receiving a “Nothing to assert” error when I run test/assert extensions. Be sure to declare support for the
touchstone IG using the following declaration:

9.11. TestScript Extensions 305

/touchstone/fhir/testing/history.html
/touchstone/fhir/testing/1.5.0/StructureDefinition-testscript-dynamic-fixture.html
/touchstone/fhir/testing/1.5.0/StructureDefinition-testscript-rule.html
/touchstone/fhir/testing/1.5.0/StructureDefinition-testscript-ruleset.html
/touchstone/fhir/testing/1.5.0/StructureDefinition-testscript-assert-rule.html
/touchstone/fhir/testing/1.5.0/StructureDefinition-testscript-assert-ruleset.html
/touchstone/fhir/testing/1.5.0/StructureDefinition-testscript-assert-stopTestOnFail.html
/touchstone/fhir/testing/1.5.0/StructureDefinition-testscript-assert-variable.html
/touchstone/fhir/testing/1.5.0/StructureDefinition-testscript-operation-authorizeInNewTab.html
/touchstone/fhir/testing/1.5.0/StructureDefinition-testscript-operation-oauth2AuthzRedirectId.html
/touchstone/fhir/testing/1.5.0/StructureDefinition-testscript-operation-oauth2AuthzRequestId.html
/touchstone/fhir/testing/1.5.0/StructureDefinition-testscript-operation-pagesNext.html
/touchstone/fhir/testing/1.5.0/StructureDefinition-testscript-operation-smartLaunchRequestId.html
/touchstone/fhir/testing/1.5.0/StructureDefinition-testscript-test-manualCompletion.html
/touchstone/fhir/testing/1.5.0/StructureDefinition-testscript-variable-paramField.html
https://www.hl7.org/fhir/testscript.html#resource
/touchstone/userguide/html/multi-profile/updating-validators.html

Touchstone Documentation, Release 6.2.1

<meta>
<profile value="http://touchstone.aegis.net/touchstone/fhir/testing/

→˓StructureDefinition/testscript"/>
</meta>

5. I am receiving “Stack Trace:” exception errors or unexpected false evaluations when using assert FHIRPath
expressions containing literal or variables containing date, dateTime or time typed values. Please refer to the
FHIRPath (Literals) specification regarding the use of literal values in FHIRPath expressions; i.e. Date, DateTime
and Time.

The FHIR TestScript defines support for FHIRPath expressions in the following ele-
ments: TestScript.variable.expression TestScript.setup.action.assert.compareToSourceExpression
TestScript.setup.action.assert.expression.

Examples of FHIRPath expressions with literal or variables containing date, dateTime or time values within
TestScript expression elements:

<assert>
<description value="Evaluate Patient.birthDate equivalent against literal date␣

→˓value"/>
<expression value="Patient.birthDate ~ @1995-06-11"/>
<warningOnly value="false"/>

</assert>

<assert>
<description value="Evaluate Patient.birthDate equivalent against variable 'd-

→˓birthDate' date value"/>
<expression value="Patient.birthDate ~ @${d-birthDate}"/>
<warningOnly value="false"/>

</assert>

<assert>
<description value="Evaluate Patient.birthDate extension dateTime equivalent␣

→˓against variable 'dt-birthTime' dateTime value"/>
<expression value="Patient.birthDate.extension.where(url = 'http://hl7.org/fhir/

→˓StructureDefinition/patient-birthTime').value ~ @${dt-birthTime}"/>
<warningOnly value="false"/>

</assert>

<assert>
<description value="Evaluate Patient.birthDate extension dateTime convert to␣

→˓Time only equivalent against variable 't-birthTime' time value (note use of 'T' in␣
→˓prefix)"/>

<expression value="Patient.birthDate.extension.where(url = 'http://hl7.org/fhir/
→˓StructureDefinition/patient-birthTime').value.toTime() ~ @T${t-birthTime}"/>

<warningOnly value="false"/>
</assert>

6. I am having issues with fixtures in my HL7-V2 TestScripts at runtime saying that the formats are incorrect. The
HL7-V2 specification requires that an HL7-V2 message consists of one or more segments. Each segment is
displayed on a different line of text. A carriage return character (r, which is 0D in hexadecimal) separates one
segment from another. The Minimal Lower Layer Protocol (MLLP) defines the leading and trailing delimiters
for an HL7 message. The MLLP Protocol sends and receives a vertical tab to start, and a carriage return and file
separator to end. Make sure that the content format of your HL7-V2 fixtures is not being altered before upload

306 Chapter 9. TestScript Authoring

https://hl7.org/fhirpath/index.html#literals
https://hl7.org/fhirpath/index.html#date
https://hl7.org/fhirpath/index.html#datetime
https://hl7.org/fhirpath/index.html#time
http://hl7.org/fhir/testscript-definitions.html#TestScript.variable.expression
http://hl7.org/fhir/testscript-definitions.html#TestScript.setup.action.assert.compareToSourceExpression
http://hl7.org/fhir/testscript-definitions.html#TestScript.setup.action.assert.expression

Touchstone Documentation, Release 6.2.1

to Touchstone. In particular, if your TestScripts are being pulled from a repository before you are uploading to
Touchstone, make sure that the content format is not being altered.

9.12. FAQ 307

Touchstone Documentation, Release 6.2.1

308 Chapter 9. TestScript Authoring

CHAPTER

TEN

CONFORMANCE SUITE AUTHORING

Organizations (with the appropriate subscription level) can now create their own Conformance Suites with custom test
groups and test scripts.

The user must be assigned the Conf Suite Editor role before being able to create and edit Conformance Suites. Only
users with this role can assign this role to other users within the organization:

10.1 Server Suites

Note: This section assumes that you are already familiar with Conformance Testing. Please review the Conformance
Testing documentation for additional information.

Test systems can be Server or Client test systems in Touchstone. This attribute is selected by the user on the Test
System screen.

309

Touchstone Documentation, Release 6.2.1

The following steps describe how to create Conformance Suites that are geared towards testing Server test systems:

1. Go to Conformance Suites page.

2. Click on New Conformance Suite button:

3. You will encounter the following error if you haven’t uploaded test scripts to Touchstone yet:

Note: Conformance Suites can be created only with test groups that your organization owns. Otherwise, the
test group owner could inadvertently impact the Conformance results of many users in your program when a test
group is modified.

To learn how to upload test groups to Touchstone, you can refer to the TestScript Authoring guide.

The user then uploads a few test groups:

310 Chapter 10. Conformance Suite Authoring

/touchstone/userguide/html/testscript-authoring/index.html

Touchstone Documentation, Release 6.2.1

4. Click on New Conformance Suite button again on the Conformance Suites page:

5. Below is the New Conformance Suite page:

We will describe the meaning of each field as we populate them in this screen.

6. Enter the Name of the suite:

Note: Touchstone will prepend the specification name/version to the suite name. This is done to maintain
uniformity and consistent naming convention across suites so it’s easier for users to identify the specification that
a suite is testing for. The type of suite (Server vs Client) is also appended by Touchstone to the name for the
same reason.

The final name of the suite in this instance would be the following:

10.1. Server Suites 311

Touchstone Documentation, Release 6.2.1

7. Select the Type of the suite. For a suite that’s geared towards testing Server test systems, the type would be
Server:

8. Select the Anchor System of the suite. For a suite that’s geared towards testing Server test systems (the SUT of
the suite), the Anchor System would be a Client/Origin test system:

Conversely, if the suite is geared towards testing Client test systems (the SUT of the suite), the Anchor System
would be a Server/Destination test system.

Anchor systems are needed to achieve comparable Conformance results among SUTs. If a suite uses different
Anchor Systems, then the results would not be meaningful.

Anchor systems must be accessible by the organization that’s creating the suite.

Note: It is highly recommended to use reliable anchor systems for your suites. This is to avoid unintended
consequences on the program’s conformance testing if the anchor system is deleted or its behavior is modified
by the owning organization. Touchstone does not require the suite owner to also own the anchor system because
it’s not easy to make such systems available. It’s rather common for organizations to rely on third parties for such
systems. In this case, we’re using TouchstoneFHIR as the Client anchor system from which requests will be
sent to the Server test systems being tested in the suite.

9. Select the Valdiator of the suite:

Validator is the AEGIS Validator to use for validating request and response payloads during test execution.

The list of Validators offered in the dropdown will be limited to the Validators used by the Test Groups owned
by the suite author’s organization.

9. Select the Test Group(s) of the suite:

312 Chapter 10. Conformance Suite Authoring

https://en.wikipedia.org/wiki/System_under_test
https://en.wikipedia.org/wiki/System_under_test
https://en.wikipedia.org/wiki/System_under_test

Touchstone Documentation, Release 6.2.1

Test Groups will contain the test scripts that the user will execute in conformance testing. The Test Group
dropdown entries will be driven by the Validator selection. If you select FHIR 3.0.2 as the Validator, for example,
then the Test Group dropdown will be populated with FHIR 3.0.2 test groups that you have access to.

Additional test groups can be selected by clicking the + sign:

We’ll cover multiple test group selection in the Categorization section of this guide.

Note: In order to be able to properly select test groups that were uploaded prior to Touchstone 5.0.0 release,
you must re-upload them to Touchstone.

10. Enter a Description for the suite:

The system will generate a default description if none is entered.

11. Choose whether or not Supported checkbox is offered to users:

10.1. Server Suites 313

/touchstone/userguide/html/conformance-suite-authoring/categorization.html

Touchstone Documentation, Release 6.2.1

If checked, users will be offered the Supported by CapabStmt checkbox on conformance results screens.
They would be able to filter results by supported interactions in the capability statement in addition to the
default (All):

Please refer to this section to see how this checkbox selection affects conformance results.

12. Choose whether or not Formats dropdown is offered to users:

If checked, users will be offered the Format dropdown on conformance results screens. They would be
able to filter results by individual formats (JSON / XML) in addition to the default (All):

Please refer to this section to see how this checkbox selection affects conformance results.

13. Choose whether or not conformance results can be Published by users:

If checked, users will be offered the option of publishing conformance results. Those results along with
the associated test executions would become publicly accessible if published:

314 Chapter 10. Conformance Suite Authoring

Touchstone Documentation, Release 6.2.1

Please refer to Publishing to learn more about conformance results publishing.

14. Select the access attributes of the suite:

This works the same way as access attributes for test systems, test definitions, etc.

10.1. Server Suites 315

/touchstone/userguide/html/conformance-testing/publishing-results.html

Touchstone Documentation, Release 6.2.1

If you’d like only your organization to view and execute tests within the suite, then select My
Organization for Can be viewed by.

15. Click on Create. Conformance Suite gets created:

We selected /FHIRSandbox/Initech/FHIR3-0-2-S-Basic as the sole test group and TouchstoneFHIR as
the anchor system for this suite.

16. Click on the name of the suite:

17. You’ll be taken to the Current Conformance page where you can test the suite:

316 Chapter 10. Conformance Suite Authoring

Touchstone Documentation, Release 6.2.1

• The selected Conformance Suite (red arrow) is the one we clicked on in the list of suites in prior step.

• The suite is made up of only one test group (blue arrow) as that was the only test group we selected
during creation.

• The test system dropdown (green arrow) lists the Server test systems that you have access to. Only
Server test systems are populated because this is a Server Conformance Suite.

• The anchor system chosen for the suite (TouchstoneFHIR) is not listed in the test systems dropdown.
The anchor system is the Client test system that will submit requests to the chosen Server test system
in a Server conformance suite. As users select different Server test systems to run this Conformance
Suite against, the same anchor system (TouchstoneFHIR in this case) will be used to submit requests
to these Server test systems. This allows for uniform comparison of Server-system conformance
results. TouchstoneFHIR is used to submit requests from because this was the anchor system chosen
for this suite in step 8 above.

• The Supported checkbox and the Format dropdown (purple arrows) are offered to the user because
we had checked these boxes during suite creation in steps 11 and 12 above.

10.2 Client Suites

Much of the content in this section is similar to the Server Suites section. It is repeated here for users that are primarily
interested in creating conformance suites for testing Client test systems. Please refer to the Peer-to-Peer testing guide
to learn more about such testing.

This section assumes that you are already familiar with Conformance Testing. Please go through the Conformance
Testing guide if you’re not.

Test systems can be Server or Client test systems in Touchstone. This attribute is selected by the user on the Test
System screen:

10.2. Client Suites 317

/touchstone/userguide/html/conformance-suite-authoring/server-suites.html
/touchstone/userguide/html/client-testing/index.html
/touchstone/userguide/html/conformance-testing/index.html
/touchstone/userguide/html/conformance-testing/index.html

Touchstone Documentation, Release 6.2.1

This section covers how to create Conformance Suites that are geared towards testing Client test systems. Here’s how
to create such a Conformance Suite:

1. Go to Conformance Suites page.

2. Click on New Conformance Suite button:

3. You will encounter the following error if you haven’t uploaded test scripts to Touchstone yet:

Note: Conformance Suites can be created only with test groups that your organization owns. Otherwise, the
test group owner could inadvertently impact the Conformance results of many users in your program when a test
group is modified.

To learn how to upload test groups to Touchstone, you can refer to the TestScript Authoring guide.

The user then uploads a few test groups:

318 Chapter 10. Conformance Suite Authoring

/touchstone/userguide/html/testscript-authoring/index.html

Touchstone Documentation, Release 6.2.1

4. Click on New Conformance Suite button again on the Conformance Suites page:

5. Below is the New Conformance Suite page:

We will describe the meaning of each field as we populate them in this screen.

6. Enter the Name of the suite:

Note: Touchstone will prepend the specification name/version to the suite name. This is done to maintain
uniformity and consistent naming convention across suites so it’s easier for users to identify the specification that

10.2. Client Suites 319

Touchstone Documentation, Release 6.2.1

a suite is testing for. The type of suite (Server vs Client) is also appended by Touchstone to the name for the
same reason.

The final name of the suite in this instance would be the following:

7. Select the Type of the suite. For a suite that’s geared towards testing Client test systems, the type would be
Client:

8. Select the Anchor System of the suite. For a suite that’s geared towards testing Client test systems (the SUT of
the suite), the Anchor System would be a Server/Destination test system:

Conversely, if the suite is geared towards testing Server test systems (the SUT of the suite), the Anchor System
would be a Origin/Client test system.

Anchor systems are needed to achieve comparable Conformance results among SUTs. If a suite uses different
Anchor Systems, then the results would not be meaningful.

Anchor systems must be accessible by the organization that’s creating the suite.

Note: It is highly recommended to use reliable anchor systems for your suites. This is to avoid unintended
consequences on the program’s conformance testing if the anchor system is deleted or its behavior is modified
by the owning organization. Touchstone does not require the suite owner to also own the anchor system because
it’s not easy to make such systems available. It’s rather common for organizations to rely on third parties for such
systems. In this case, we’re using Initech-FHIR 3-0-2 Common Server as the Server anchor system to which
requests will be submitted from the Client test systems being tested in the suite.

9. Select the Valdiator of the suite:

Validator is the AEGIS Validator to use for validating request and response payloads during test execution.

320 Chapter 10. Conformance Suite Authoring

https://en.wikipedia.org/wiki/System_under_test
https://en.wikipedia.org/wiki/System_under_test
https://en.wikipedia.org/wiki/System_under_test

Touchstone Documentation, Release 6.2.1

The list of Validators offered in the dropdown will be limited to the Validators used by the Test Groups owned
by the suite author’s organization.

9. Select the Test Group(s) of the suite:

Test Groups will contain the test scripts that the user will execute in conformance testing. The Test Group
dropdown entries will be driven by the Validator selection. If you select FHIR 3.0.2 as the Validator, for example,
then the Test Group dropdown will be populated with FHIR 3.0.2 test groups that you have access to.

Additional test groups can be selected by clicking the + sign:

We’ll cover multiple test group selection in the Categorization section of this guide.

Note: In order to be able to properly select test groups that were uploaded prior to Touchstone 5.0.0 release,
you must re-upload them to Touchstone.

10. Enter a Description for the suite:

The system will generate a default description if none is entered.

10.2. Client Suites 321

/touchstone/userguide/html/conformance-suite-authoring/categorization.html

Touchstone Documentation, Release 6.2.1

11. Choose whether or not Supported checkbox is offered to users:

If checked, users will be offered the Supported by CapabStmt checkbox on conformance results screens.
They would be able to filter results by supported interactions in the capability statement in addition to the
default (All):

Please refer to this section to see how this checkbox selection affects conformance results.

12. Choose whether or not Formats dropdown is offered to users:

If checked, users will be offered the Format dropdown on conformance results screens. They would be
able to filter results by individual formats (JSON / XML) in addition to the default (All):

Please refer to this section to see how this checkbox selection affects conformance results.

13. Choose whether or not conformance results can be Published by users:

If checked, users will be offered the option of publishing conformance results. Those results along with
the associated test executions would become publicly accessible if published:

322 Chapter 10. Conformance Suite Authoring

Touchstone Documentation, Release 6.2.1

Please refer to Publishing to learn more about conformance results publishing.

14. Select the access attributes of the suite:

This works the same way as access attributes for test systems, test definitions, etc.

10.2. Client Suites 323

/touchstone/userguide/html/conformance-testing/publishing-results.html

Touchstone Documentation, Release 6.2.1

If you’d like only your organization to view and execute tests within the suite, then select My
Organization for Can be viewed by.

15. Click on Create. Conformance Suite gets created:

We selected /FHIRSandbox/Initech/FHIR3-0-2-C-Basic as the sole test group and Initech-FHIR 3-0-2
Common Server as the anchor system for this suite.

16. Click on the name of the suite:

17. You’ll be taken to the Current Conformance page where you can test the suite:

324 Chapter 10. Conformance Suite Authoring

Touchstone Documentation, Release 6.2.1

• The selected Conformance Suite (red arrow) is the one we clicked on in the list of suites in prior step.

• The suite is made up of only one test group (blue arrow) as that was the only test group we selected
during creation.

• The test system dropdown (green arrow) lists the Client test systems that you have access to. Only
Client test systems are populated because this is a Client Conformance Suite.

• The anchor system chosen for the suite (Initech-FHIR 3-0-2 Common Server) is not listed in the test
systems dropdown. The anchor system is the Server test system that requests will be submitted to
by the chosen Client test system in a Client conformance suite. As users select different Client
test systems to run this Conformance Suite against, the same anchor system (Initech-FHIR 3-0-2
Common Server in this case) will be used to submit requests to from these Client test systems.
This allows for uniform comparison of Client-system conformance results. Initech-FHIR 3-0-2
Common Server is used to submit requests to because this was the anchor system chosen for this
suite in step 8 above.

• The Supported checkbox and the Format dropdown (purple arrows) are offered to the user because
we had checked these boxes during suite creation in steps 11 and 12 above.

10.3 Categorization

10.3.1 Overview

If a Conformance Suite is composed of more than one test group, then Categorization is required and interaction counts
will be aggregated based on the Categorization definition.

We will create a suite with two test groups next:

1. Click on “New Conformance Suite” on Conformance Suites page.

10.3. Categorization 325

Touchstone Documentation, Release 6.2.1

2. Enter the values for the fields as indicated by the blue arrows below:

3. Click the + sign:

326 Chapter 10. Conformance Suite Authoring

Touchstone Documentation, Release 6.2.1

4. You’ll get a warning indicating that Categorization is required when multiple test groups are selected:

Touchstone uses the Categorization definition to channel the interactions of multiple test groups into one Result
Summary chart on the Conformance Current page.

5. Open the link within the warning on a new browser tab to get to the Categorizations page:

You can also get to the Categorizations page from Conformance Suites page via the Categorizations link:

6. Here is the Categorizations page:

The page lists all the categorizations that you have view access to.

10.3. Categorization 327

Touchstone Documentation, Release 6.2.1

You can only use categorizations that your organization owns as part of your suites. This is to minimize the
impact on your conformance program if other organizations modify the categorization. You can view other
categorizations and copy them (assuming no Copyright infringement) into your own.

7. Filter for FHIR-Client categorizations (since the suite we’re creating in this section is of FHIR-Client type)
and click on FHIR3-0-2-Standard-Client categorization in the list:

8. Copy and paste the contents into a file in your XML editor:

328 Chapter 10. Conformance Suite Authoring

Touchstone Documentation, Release 6.2.1

We’ve saved the contents into a file called “InitechCert.xml”:

9. Change the description appropriately:

10.3. Categorization 329

Touchstone Documentation, Release 6.2.1

10. Upload the Categorization file on the Categorizations page:

330 Chapter 10. Conformance Suite Authoring

Touchstone Documentation, Release 6.2.1

11. Browse to the InitechCert.xml file on your machine and click on Upload button:

12. The Categorization will take on the name of the uploaded file. Touchstone will prepend the Specification
name/version and will append the type to the name of the file to enforce uniform naming convention across
categorizations so they’re easier to identify by end-users:

13. Resume where we left off on New Conformance Suite page from step 4.

Re-enter the field values if you had to refresh the screen and click on the + sign again.

This time the system will not generate a warning and will allow you to select the Categorization that we just
created:

10.3. Categorization 331

Touchstone Documentation, Release 6.2.1

14. Click on Create and then select the suite that got created:

332 Chapter 10. Conformance Suite Authoring

Touchstone Documentation, Release 6.2.1

15. Notice that the root node of the Results Summary chart (blue arrows below) matches the name of the Catego-
rization file that we just uploaded.

We have successfully created a conformance suite with two test groups (green arrows above) that uses a Catego-
rization.

When Categorization is used in a suite, the Result Summary chart is entirely driven by the Categorization.
The individual nodes/bands within the Result Summary chart (red arrows below) will be identical to the
individual categories within the Categorization (blue arrows below):

10.3. Categorization 333

Touchstone Documentation, Release 6.2.1

The terms node and category are hence synonymous when Categorization is used. We will use the terms interchange-
ably in the remainder of this section.

334 Chapter 10. Conformance Suite Authoring

Touchstone Documentation, Release 6.2.1

10.3.2 Definition

We will dive deeper into the Categorization file contents in this section and see how it impacts the Conformance Results.

10.3.2.1 Root Node

Notice that the root node (blue arrow below) does not have a name:

Touchstone will use the Categorization file name (red arrow above) as the name of the root node which in turn gets
used as the name of the root node on the Results Summary chart (blue arrows below):

10.3. Categorization 335

Touchstone Documentation, Release 6.2.1

10.3.2.2 Leaf Nodes

Leaf categories are those that have no more categories beneath them:

They correspond to the outermost nodes in the Result Summary chart when categorization is used:

336 Chapter 10. Conformance Suite Authoring

Touchstone Documentation, Release 6.2.1

Notice that the hierarchy of nodes (red arrows below) in the Results Summary chart matches the hierarchy of categories
(blue arrows below) in the file definition:

10.3. Categorization 337

Touchstone Documentation, Release 6.2.1

Side note: When categorization is not used then the outermost node corresponds to individual test scripts within the
test group as indicated in this section.

338 Chapter 10. Conformance Suite Authoring

Touchstone Documentation, Release 6.2.1

10.3.2.3 Parent Nodes

The Parent categories are pointed to by the (blue arrows below):

You can organize the nodes any way you like.

10.3. Categorization 339

Touchstone Documentation, Release 6.2.1

10.3.2.4 Node Deletion

1. Notice the existing interaction counts for the Summary category:

2. Remove the AllergyIntolerance category from the file:

3. Re-upload the categorization file. Notice that the version increments:

340 Chapter 10. Conformance Suite Authoring

Touchstone Documentation, Release 6.2.1

Notice also that the Conformance Suite version increments as well:

Click on the history icon to see the history of the suite:

The cause of the version increments is shown under the Updates column:

Hovering over the text gives more details about the cause:

10.3. Categorization 341

Touchstone Documentation, Release 6.2.1

4. Go back to the Current page

Observe the new interaction counts for the Summary category. The AllergyIntolerance node is absent
as it was removed from the file:

342 Chapter 10. Conformance Suite Authoring

Touchstone Documentation, Release 6.2.1

10.3.2.5 Paths

This section explains how the interactions in the test groups (that are part of a suite with categorization) get categorized
into different buckets based on the Categorization definition.

The leaf nodes of the Categorization have the categorization paths specified:

10.3.2.5.1 FHIR

FHIR paths are of three types:

• resource paths: whose values take the form “resource/[Type]” where Type is one of the values listed on FHIR
Resource Types.

For example, all test scripts in the suite that invoke operations involving the Patient resource (blue arrow below)
would get aggregated into the Patient category (red arrow below)

10.3. Categorization 343

http://build.fhir.org/valueset-resource-types.html#expansion
http://build.fhir.org/valueset-resource-types.html#expansion

Touchstone Documentation, Release 6.2.1

• operation paths: whose values take the form “operation/[Type]” where Type is one of the extended operation
values listed on FHIR Extended Operations. There are ways to define extended operations not on this list and
use them in Categorization. Please contact Touchstone_Support@aegis.net for details.

• whole system paths: whose values take the form “/[Type]” or “interaction/[Type]” where

– “/[Type]” can be “/capabilities” or “/metadata”, and..

– “interaction/[Type]” can be “interaction/transaction”, “interaction/batch”, “interaction/search-system”,
or “interaction/history-system”.

See this section on FHIR API page:

344 Chapter 10. Conformance Suite Authoring

http://build.fhir.org/operationslist.html
mailto:Touchstone_Support@aegis.net
http://build.fhir.org/http.html

Touchstone Documentation, Release 6.2.1

The /capabilities and /metadata endpoints are used to retrieve Capabilities Statement from the FHIR
system.

Note: If the test groups in a suite do not contain the interactions in a categorization path, the Result
Summary chart will not display the category/node even if it’s specified in the Categorization. This is
true for all types of categorizations.

For example, notice that even though the Individuals categorization has many sub-categories (green arrows
below) besides Patient and RelatedPerson, only the Patient and RelatedPerson nodes display in the Result
Summary chart (blue arrows below) because the test groups within the suite only contain operations/interactions
for Patient and RelatedPerson:

10.3. Categorization 345

Touchstone Documentation, Release 6.2.1

10.3.2.5.2 CDS Hooks

CDS Hooks interactions are not standardized in the specification.

The operation codes in the test script will map directly to the interactions in the Result Summary chart (blue arrows
below):

The categories can be arranged in any way. In the example below, the cds-services operation/interaction has been
assigned to the CDS-Services node/category (green arrows below):

10.4 Resource Ownership

An organization must own the Test Groups and the Categorization that the Conformance Suite uses:

Test Groups

Conformance Suites can be composed of one to three test groups. These test groups need to be owned by the organi-
zation that owns the suite.

The organization that’s creating the suite and uploading a test group is the one that owns the suite and test group,
respectively.

This constraint is imposed by Touchstone to avoid unintentional impact on the conformance results of a program when
the Test Group owner modifies the test scripts and fixtures in the test group. Such modifications will increment the
Conformance Suite version and can drastically change the conformance results of test systems.

Categorizations

Categorization is required for suites that are composed of more than one test group. The Categorization itself needs to
be owned by the organization that’s creating the suite. This is again to avoid unintentional impact on the conformance
results of a program when the Categorization owner modifies the categorization. Such modifications will increment
the Conformance Suite version and can drastically change the conformance results of test systems.

Please refer to Categorizations for more information

What about Anchor Systems?

346 Chapter 10. Conformance Suite Authoring

https://cds-hooks.org/
/touchstone/userguide/html/conformance-suite-authoring/categorization.html#categorization

Touchstone Documentation, Release 6.2.1

Anchor systems are needed to achieve comparable Conformance results among SUTs. If a suite uses different Anchor
Systems, then the results would not be meaningful.

• If the suite is a Server suite, then the Anchor System will be a Client system that all Server SUTs will use for
test executions so conformance results would be consistent in the suite.

• If the suite is a Client suite, then the Anchor System will be a Server system that all Client SUTs will use for
test executions so conformance results would be consistent in the suite.

Anchor systems must be accessible by the organization that’s creating the suite. Although anchor systems do affect the
conformance results, Touchstone does not require organizations to own the anchor systems in order to select them as
part of their suites. This exception has been made because anchor systems are difficult to provision (as opposed to test
groups and categorizations).

It is highly recommended though to use reliable anchor systems for your suites. This is to avoid unintended conse-
quences on the program’s conformance testing if the anchor system is deleted or its behavior is modified by the owning
organization.

You can learn more about client anchor systems here and here.

You can learn more about server anchor systems here and here.

10.5 Versioning

Conformance Suites are versioned in Touchstone.

This is to make conformance results meaningful when Conformance Suite definitions change over time. One version
of a Conformance Suite could be composed of entirely different test scripts from another version. By extension, the
Conformance Results for the different versions need to be tracked separately to make the results more meaningful.

Another reason why Conformance Suites are versioned is to maintain existing Results Summary results (both published
and unpublished) when the Conformance Suite definition changes. For example, if the version of a Conformance Suite
changes from version 1 to version 2, the Unpublished as well as the Published results on the Results Summary page
for version 1 are maintained.

10.5.1 Version Increments

The following changes to a Conformance Suite cause the version of the suite to increment:

Change in Test Group selections

If test groups are added/removed or a different test group is selected, then that causes the suite version to increment:

10.5. Versioning 347

https://en.wikipedia.org/wiki/System_under_test
https://en.wikipedia.org/wiki/System_under_test
https://en.wikipedia.org/wiki/System_under_test

Touchstone Documentation, Release 6.2.1

Change in Test Group content

If the content of the test groups (that the suite uses) changes then the suite version increments.

The content of a test group changes when:

a. The content of one or more test definitions (test scripts, fixtures, or rules) within the Test Group changes.
b. One or more sub groups or test definitions within the Test Group is deleted.

For example, consider a suite that uses /FHIRSandbox/Initech/FHIR3-0-2-Basic test group. If one or more test
definitions whose qualified name starts within ‘/FHIRSandbox/Initech/FHIR3-0-2-Basic/ ’ changes or is deleted, then
that would increment the Conformance Suite: That includes, for example:

• ‘/FHIRSandbox/Initech/FHIR3-0-2-S-Basic/ ’GroupA sub-group deletion.

• ‘/FHIRSandbox/Initech/FHIR3-0-2-S-Basic/ ’GroupA/AllergyIntolerance/Client Assigned Id sub-group dele-
tion.

• ‘/FHIRSandbox/Initech/FHIR3-0-2-S-Basic/ ’GroupA/AllergyIntolerance/_reference/resources/AllergyIntolerance-
create-client-id.json fixture content change.

• ‘/FHIRSandbox/Initech/FHIR3-0-2-S-Basic/ ’GroupA/AllergyIntolerance/Client Assigned
Id/AllergyIntolerance-client-id-json testscript content change.

Even though some of the test scripts within ‘/FHIRSandbox/Initech/FHIR3-0-2-Basic/’ test group references fixtures
or rules in another test group, changes to those fixtures or rules would NOT increment the Conformance Suite if their
qualified names does not begin with ‘/FHIRSandbox/Initech/FHIR3-0-2-Basic/ ’. That includes, for example:

• ‘/FHIRSandbox/Initech//FHIRCommon/ ’_reference/rule/ sub-group deletion.

• ‘/FHIRSandbox/Initech//FHIRCommon/ ’_reference/rule/AssertBodyIfHeader.groovy rule content change.

These test definitions do not start with ‘/FHIRSandbox/Initech/FHIR3-0-2-Basic/ ’ and therefore do not meet the criteria
of changes within the test group(s) of a suite.

Change to Categorization selection

348 Chapter 10. Conformance Suite Authoring

Touchstone Documentation, Release 6.2.1

If you remove, select, or change the Categorization that a suite uses, then the suite version increments:

Change to Categorization content

Changes to the Categorization content can change ‘% Conformance’ and therefore causes the suite version to incre-
ment:

We demonstrated the affect of the change above on the suite in this section.

Changes to Formats or Supported offering

Changes to these checkboxes do affect ‘% Conformance’. If either flag changes, then the suite version increments:

10.5.2 No Version Increments

The following changes to a Conformance Suite do NOT cause the suite version to increment as these changes do not
cause the ‘% Conformance’ to change in the conformance results of a suite.

Change to Name of the suite

The name of the suite changes across all versions of the suite and across all conformance suite results.

Change to Description of the suite

The description of the suite changes for the suite version that the change took place on. But the version
does not increment.

10.5. Versioning 349

Touchstone Documentation, Release 6.2.1

Change to Publishable attribute of the suite

The Publishable attribute of the suite changes for the suite version that the change took place on. But the
version does not increment.

Change to Access attributes of the suite

The Can be viewed/modified by attributes of the suite changes for the suite version that the change took
place on. But the version does not increment.

10.6 Best Practices

10.6.1 Suite Versioning

It is highly recommended to use a separate Conf Suite (inaccessible to users outside your organization) to test changes
to the suite definition that would cause the suite version to increment. Events that cause a suite version to increment
are covered in Versioning section. Uncontrolled and frequent version increments can be very annoying to users of your
suite as Conformance Current page is only accessible for the latst version of a suite.

For example, if you have a Suite called “FHIR4-0-1-Initech-Cert-Client” that’s the primary suite to be used by end-
users and it uses a test group called “FHIR4-0-1-Initech-BasicCert“, you can create another suite called “FHIR4-0-
1-Initech-Dev-Client” that’s accessible to fewer users. This Dev suite will not be referencing the same test group(s)
(and categorization) as the Cert suite. It would instead use a different test group e.g. “FHIR4-0-1-Initech-BasicDev”
that’s being actively developed and frequently uploaded to Touchstone (thereby causing many version increments to
“FHIR4-0-1-Initech-Dev-Client” suite).

Once “FHIR4-0-1-Initech-BasicDev” test group has reached stability (along with any Categorization you may be us-
ing) and you have verified Conformance results of “FHIR4-0-1-Initech-Dev-Client” suite, you can upload “FHIR4-
0-1-Initech-BasicDev” test group as “FHIR4-0-1-Initech-BasicCert” test group and that will cause only one version
increment for the “FHIR4-0-1-Initech-Cert-Client” suite.

350 Chapter 10. Conformance Suite Authoring

/touchstone/userguide/html/conformance-suite-authoring/versioning.html

Touchstone Documentation, Release 6.2.1

10.6.2 Anchor Systems

If possible, try to use anchor systems that are either owned by your organization or an organization you can rely upon.
Doing so will avoid unintended consequences on the conformance results of large numbers of test systems and users
that are relying on suite results to be stable.

10.6.3 Publishing

You can change the Publishable attribute of a conformance suite at a later time. It’s best not to check the box initially
when a conformance suite is under active development.

10.6.4 Deletion

Touchstone allows Conformance Suites to be deleted entirely on the Conformance Suite History page. This feature is
offered primarily for clean-up purposes when conformance suites are under intense development.

10.6. Best Practices 351

Touchstone Documentation, Release 6.2.1

Deletion of a suite version causes permanent deletion of all conformance results (for all test systems) that uses that
version of the suite. Such deletion can negatively impact all the organizations that are using your suite.

It is highly recommended not to delete conformance suites whose Can by Viewed by attribute is set to either My Org
Groups or Everyone.

352 Chapter 10. Conformance Suite Authoring

Touchstone Documentation, Release 6.2.1

10.7 FAQ

1. I’m unable to see a test group on Conformance Current page even though I’ve selected it as one of the test groups
in my suite

In order to be able to properly select test groups that were uploaded prior to Touchstone 5.0.0 release, you must
re-upload them to Touchstone.

2. How come conformance suites cannot be deleted by users that have Conf Suite Editor role?

Conf Suite deletion can have a negative impact on all organizations that use the suite. As such, only Org Reps
of the organization that owns the suite can delete the suite.

This section describes this topic a bit more.

3. How come the anchor system for a suite is not indicated on Conformance Current page

The Anchor system is indicated on Conformance Suites, Result Summary, and various Test Execution
screens. The Conformance Current page is crowded as it is. Indicating the Anchor system on the screen
can confuse the user-selectable SUT with the Anchor system. The main focus of a conformance suite is
to test SUTs. The Anchor system will be the same for all SUTs in a given conformance suite.

10.7. FAQ 353

https://en.wikipedia.org/wiki/System_under_test
https://en.wikipedia.org/wiki/System_under_test
https://en.wikipedia.org/wiki/System_under_test

Touchstone Documentation, Release 6.2.1

354 Chapter 10. Conformance Suite Authoring

CHAPTER

ELEVEN

CONTINUOUS INTEGRATION

11.1 API

Test executions can be launched and monitored via remote RESTful web services. This allows for integration of Touch-
stone test executions as part of your internal automated regressions tests (e.g. CI runs). The XML and JSON schemas
for Touchstone API are available within the schemas folder in touchstone-api.zip

We recommend that you use a separate test user account for Touchstone API. Test executions launched on behalf of
this test user via Touchstone API will be visible to all members of your organization on the Touchstone UI. So if
the Touchstone API does not provide enough details on what went wrong in a test execution, any member of your
organization can log in as self on the Touchstone UI and investigate the test failures further.

You can register a test user account within your organization and assign only the Tester role to this account. As the
Org Rep, when you approve the registration of this test user account, here’s where you assign the Tester role:

355

Touchstone Documentation, Release 6.2.1

11.1.1 Authentication

This API call takes the user credentials in the request body and returns an API-Key in the response. Alternatively, the
user credentials could be passed in the Authorization header using Basic Authentication. The API-Key value must
then be passed in the request header for all subsequent API calls.

URL https://touchstone.aegis.net/touchstone/api/authenticate
Method POST
Examples See goodBasic-authenticateRequest-xxx and goodBasic-authenticateResponse-xxx files

within authenticate folder in touchstone-api.zip

Before you could call any of the other APIs, you must authenticate with Touchstone. Successful authentication will start
a new API “session” with Touchstone. There are no limits on how long an API “session” can last. It is recommended
that you re-use the same API-Key for all subsequent API calls as re-authenticating would require another trip to the
server which will start a new API “session”.

356 Chapter 11. Continuous Integration

Touchstone Documentation, Release 6.2.1

11.1.2 Launching Executions

This API call takes the Test Setup name in the request body and returns the id of the test execution (that was launched)
in the response. This will be needed in Retrieve Execution status API call later.

URL https://touchstone.aegis.net/touchstone/api/testExecution
Method POST
Examples See good-executeTestRequest-xxx and good-executeTestResponse-xxx files within exe-

cuteTest folder in touchstone-api.zip

You should have Test Setups pre-created on the Touchstone UI before launching test executions using Touchstone API.
Details on how to do that are covered in the Creating Test Setup section in this guide. It is also recommended to have
your Test Executions reach expected results on the Touchstone UI before you integrate them via Touchstone API. The
UI offers a lot more navigation and information than Touchstone API.

For target test systems that are configured to use OAuth2 tokens, you can refer to the OAuth2 Static Token and OAuth2
Grant Flow sections for details.

11.1.3 Retrieve Execution status

This API call takes the id of the test execution in the request URL and returns the test execution status.

URL https://touchstone.aegis.net/touchstone/api/testExecution/[testExecId]
Method GET
Example URL https://touchstone.aegis.net/touchstone/api/testExecution/20160516101258248
Examples See good-testExecStatusRequest-xxx and good-testExecStatusResponse-xxx files within

testExecStatus folder in touchstone-api.zip

You do not need to wait between “/api/testExecution” (POST) and “/api/testExecution” (GET) calls. But you
do need to wait for 4 seconds between repeated “/api/testExecution” (GET) calls. The response returned from
“/api/testExecution” (GET) aligns with a row on the following screen in Touchstone UI:

11.1. API 357

/touchstone/userguide/html/executing-tests/test-setup.html

Touchstone Documentation, Release 6.2.1

11.1.4 Retrieve Execution Detail

This API call takes the id of the test execution in the request URL and returns the test execution status along with
summary status for all the test script executions within the test execution.

URL https://touchstone.aegis.net/touchstone/api/testExecDetail/[testExecId]
Method GET
Example URL https://touchstone.aegis.net/touchstone/api/testExecDetail/20160516101258248
Examples See good-testExecDetailRequest-xxx and good-testExecDetailResponse-xxx files within

testExecDetail folder in touchstone-api.zip

You do not need to wait between “/api/testExecution” (GET) and “/api/testExecDetail” calls. But you do need to
wait for 15 seconds between repeated “/api/testExecDetail” calls. The reason for the long wait time is to discourage
bypassing of “/api/testExecution” (GET) calls. You should call “/api/testExecDetail” only when the test execution
has reached completion. To determine if a test execution has reached completion, you can call “/api/testExecution”
(GET) repeatedly every 4 seconds. Once it has reached completion, you only need to call “/api/testExecDetail” once.
The response returned from “/api/testExecDetail” aligns with the following screen in Touchstone UI:

11.1.5 Retrieve Script Exec Detail

This API call takes the id of the test execution in the request URL as well as the name of a test script and returns the
script execution details.

URL https://touchstone.aegis.net/touchstone/api/scriptExecDetail/[testExecId]?testscript=[value]
Method GET
Example URL https://touchstone.aegis.net/touchstone/api/scriptExecDetail/20180507121755387?testscript=/FHIR4-

0-1-Basic/A-C/Account/Client Assigned Id/Account-client-id-json
Examples See good-scriptExecDetaillRequest-xxx and good-scriptExecDetailResponse-xxx files

within scriptExecDetail folder in touchstone-api.zip

You do not need to wait between “/api/testExecDetail” and “/api/scriptExecDetail” calls. But you do need to wait for
4 seconds between repeated “/api/scriptExecDetail” calls. Repeated “/api/scriptExecDetail” calls would presumably
be for different test scripts within the test execution. You should call “/api/scriptExecDetail” when the test execu-
tion has reached completion (determined by “/api/testExecution” GET call) and after calling “/api/testExecDetail”.
The “/api/testExecDetail” response will contain the parameters needed to make “/api/scriptExecDetail” call

358 Chapter 11. Continuous Integration

Touchstone Documentation, Release 6.2.1

(i.e. the testExecId and the name of the test script you want to dig deeper into). The response returned from
“/api/scriptExecDetail” call aligns with the following screen in Touchstone UI:

11.1.6 Pseudo code

You do not need to make “/api/testExecDetail” and “/api/scriptExecDetail” calls when all is well in
“/api/testExecution” (GET) response. These calls are available when your test execution has some test script ex-
ecution errors that you expect (because of current capabilities of the test system) and you want to confirm that
the errors are coming from the same scripts. Other uses for “/api/scriptExecDetail” include confirmation of neg-
ative assertion results, operation response times, etc. But these are more advanced use cases. You can start out
with getting “/api/authenticate” and “/api/testExecution” calls working in your environment before integrating
“/api/testExecDetail” and “/api/scriptExecDetail” calls ” if needed.

Here’s some pseudo-code for launching test execution and getting test execution status:

// Authenticate First
AuthenticateResponse authenticateResponse = RestClient.useRelaxedHTTPSValidation()

.headers("Accept: "application/json'")

.url("https://touchstone.aegis.net/
→˓touchstone/api/authenticate")

.post("{ "email' : "myOrgCIUser@myOrg.com
→˓','password' : "password'}")

// Launch test execution using the API-Key retrieved and a test setup that was pre-
→˓created on UI
ExecuteTestResponse executeTestResponse = RestClient.useRelaxedHTTPSValidation()

.headers("API-Key:"+ authenticateResponse.
→˓getApiKey()+"Accept: "application/json',

Content-Type:
→˓"application/json''")

.body("{"testSetup': "MyFavoriteTestSetup'}
→˓")

.post("https://touchstone.aegis.net/
→˓touchstone/api/testExecution"))

// Retrieve the test execution status in a loop until completion.
(continues on next page)

11.1. API 359

Touchstone Documentation, Release 6.2.1

(continued from previous page)

TestExecStatusResponse execStatusResponse = RestClient.useRelaxedHTTPSValidation()
.headers("API-Key:␣

→˓authenticateResponse.getApiKey(), "Accept: "application/json'")
.get("https://touchstone.aegis.net/

→˓touchstone/api/ testExecution/"+
executeTestResponse.

→˓getTestExecId())

while (execStatusResponse.getStatus()==null or execStatusResponse.getStatus()=="Not␣
→˓Started" or execStatusResponse.getStatus()=="Running") {

waitFor(4 seconds)
execStatusResponse = RestClient.useRelaxedHTTPSValidation()

.headers("API-Key: authenticateResponse.getApiKey(), "Accept:
→˓"application/json'")

.get("https://touchstone.aegis.net/touchstone/api/testExecution/
→˓"+ executeTestResponse.getTestExecId())
}
assert execStatusResponse.getStatus()=="Passed"

There is a lot more information in the responses. Many more assertions can be performed on the response body and
headers. That and the “/api/testExecDetail” and “/api/scriptExecDetail” calls are left as an exercise for the reader.
Once you’ve had a chance to look into touchstone-api.zip and get the “/api/authenticate” and “/api/testExecution”
calls working in your environment, it should not be difficult to get “/api/testExecDetail” and “/api/scriptExecDetail”
calls working as well. They follow the same paradigm.

11.1.7 Retrieve FHIR Test Report

This API call (“/api/testReport”) is available as an alternative to “/api/scriptExecDetail”. It has a subset of informa-
tion available in “/api/scriptExecDetail” responses. The only advantage of this API is that it returns TestReport which
is compliant to the FHIR specification. This API call takes the id of the test execution in the request URL as well as
the name of a test script and returns the script execution details.

URL https://touchstone.aegis.net/touchstone/api/testReport/[testExecId]?testscript=[value]
Method GET
Example URL https://touchstone.aegis.net/touchstone/api/testReport/20180507121755387?testscript=/FHIR4-

0-1-Basic/A-C/Account/Client Assigned Id/Account-client-id-json
Examples See good-testReport-xxx and good-testReport-xxx files within testReport folder in

touchstone-api.zip

You do not need to wait between “/api/testExecDetail” and “/api/testReport” calls. But you do need to wait for 4
seconds between repeated “/api/testReport” calls. Repeated “/api/testReport” calls would presumably be for different
test scripts within the test execution. You should call “/api/testReport” when the test execution has reached completion
(determined by “/api/testExecution” GET call) and after calling “/api/testExecDetail”. The “/api/testExecDetail”
response will contain the parameters needed to make “/api/testReport” call (i.e. the testExecId and the name of the
test script you want to dig deeper into). The response returned from “/api/testReport” call aligns with the screen below
in Touchstone UI:

If “/api/testReport” call fails because of a bad request, an OperationOutcome response will be returned.

360 Chapter 11. Continuous Integration

http://build.fhir.org/testreport.html
http://build.fhir.org/operationoutcome.html

Touchstone Documentation, Release 6.2.1

11.1.8 OAuth2 Static Token

Destination test systems can be configured to support OAuth2 with static OAuth2 tokens:

Touchstone API allows the token that has been configured on Test Setup (on the UI) for such test systems to be over-
written as part of the API call.

URL https://touchstone.aegis.net/touchstone/api/testExecution
Method POST
Examples See good-oauth2TokenexecuteTestRequest-xxx and good-

oauth2TokenexecuteTestResponse-xxx files within executeTest folder in touchstone-api.zip

As detailed in ExecuteTestRequest, the request payload would normally have the TestSetup name to execute:

{
"testSetup" : "FHIR4-0-1-Basic-P-R-Patient-Client Assigned Id--All"

}

To specify the static OAuth2 token for the destination test system as part of the ExecuteTestRequest, the token would
be specified along with the full name of the test system:

{
"testSetup" : "FHIR4-0-1-Basic-P-R-Patient-Client Assigned Id--All",
"destOAuth2Tokens" : [

{
(continues on next page)

11.1. API 361

/touchstone/userguide/html/continuous-integration/api.html#launching-executions

Touchstone Documentation, Release 6.2.1

(continued from previous page)

"dest" : "Org1-TestSystemA",
"token" : "token1"

},
{
"dest" : "Org1-TestSystemB",
"token" : "token2"

},
{
"dest" : "Org1-TestSystemC",
"token" : "token3"

}
]

}

In the example above, we have three separate destination test systems. In most cases, there will only be one destination
involved. The number of destinations is specified in the test script.

The dest value would be [Organization]-[Test System] from Test Systems where [Organization] is the value under
Organization column and [Test System] is the value under Test System column. The token value would be the
current OAuth2 token for the target test system.

11.1.9 OAuth2 Grant Flow

This section pertains to operation calls that require OAuth2 Authorization for test system servers configured with Dy-
namic OAuth2:

When test execution reaches such an operation, the status changes to OAuth2-Authorize and a popup is displayed on
the UI requiring the user to take action:

362 Chapter 11. Continuous Integration

Touchstone Documentation, Release 6.2.1

This section covers how to successfully get past this operation using REST APIs.

In the popup above, the user is required to either cancel or continue to the OAuth2-Authorize URL displayed in
the popup. This URL is now returned in the API responses from Touchstone when the test execution has reached
OAuth2-Authorize status. The oauth2AuthzUrl element value in GET “/api/testExecution”, “/api/testExecDetail”,
and “/api/scriptExecDetail” responses will be identical to the OAuth2-Authorize URL value in the popup above.

There are two ways of resuming the test execution using the APIs:

1. Test execution can be launched with oauth2AuthzApiRedirected absent or specified as false in the payload of
“/api/testExecution” (POST) request:

{
"testSetup" : "FHIRSandbox--security-fhir-r4-standalone-launch-patient",
"oauth2AuthzApiRedirected": false

}

This will require the client to grab the oauth2AuthzUrl value from the response to “/api/testExecution” (GET) call and
use that in automated browser (e.g. Selenium) to hit the test system’s OAuth2 server and authorize the requested scopes.
The end of that process will result in browser redirecting to Touchstone’s OAuth2 Redirect URL. This mechanism
will require the automated browser (e.g. Selenium) to enter credentials in the Touchstone Login screen (after being
redirected) to resume the test execution in Touchstone.

11.1. API 363

Touchstone Documentation, Release 6.2.1

Note that no additional API calls are needed with this mechanism to resume the test execution. The downside is that
the client’s Selenium browser will need to interact with Touchstone UI (in addition to the test system’s OAuth2 server).

2. Alternatively, Test execution can be launched with oauth2AuthzApiRedirected specified as true in the payload
of “/api/testExecution” (POST) request:

{
"testSetup" : "FHIRSandbox--security-fhir-r4-standalone-launch-patient",
"oauth2AuthzApiRedirected": true

}

This will again require the client to grab the oauth2AuthzUrl value from the response to “/api/testExecution” (GET)
call and use that in automated browser (e.g. Selenium) to hit the test system’s OAuth2 server and authorize the requested
scopes. The end of that process will again result in browser redirecting to Touchstone’s OAuth2 Redirect URL. But this
time, the browser will not be redirected to the Login screen. It will instead stay on the Redirect URL in the browser to
allow the automated test software to grab the content of the OAuth2-Authorize Redirect URL. This URL will contain
data that will be needed to resume the test execution.

The OAuth2-Authorize Redirect URL obtained from previous step has to be provided in payload of request to a new
API endpoint:

URL https://touchstone.aegis.net/touchstone/api/oauth2grant
Method POST
Payload { “oauth2RedirectUrl” : “[the redirect url in browser after OAuth2 grant]”}

Test execution should resume after that and GET “/api/testExecution” can be called as usual to get the status of the
test execution.

11.2 Jenkins Integration Example

The Pseudo Code example is used as the basis for the following use case where a Jenkins CI server job, which builds a
FHIR server, defines a post build task that calls the Touchstone API RESTful web services. The Jenkins Groovy plugin
is used where we create an externally called Groovy script that executes the authenticate service, test execution service
and iterative status check service calls.

• The installation and configuration of a Jenkins CI server, the corresponding FHIR server build job definition
within the Jenkins environment, and installation of the Jenkins Groovy plugin is described in the Jenkins docu-
mentation and left as an exercise to the user.

• This use case was successfully implemented within a Jenkins 2.x CI server installed on a CentOS Enterprise
Linux server.

11.2.1 Groovy Script Definition

The Groovy script uses the HTTPBuilder class library and corresponding supporting libraries in order to provide the
means to call the Touchstone API HTTP / RESTful web service endpoints.

Imports
import groovyx.net.http.HTTPBuilder
import static groovyx.net.http.ContentType.XML
import static groovyx.net.http.Method.GET
import static groovyx.net.http.Method.POST

364 Chapter 11. Continuous Integration

/touchstone/userguide/html/continuous-integration/api.html#pseudo-code
https://jenkins.io/doc/
https://jenkins.io/doc/
https://github.com/jgritman/httpbuilder/wiki

Touchstone Documentation, Release 6.2.1

11.2.1.1 Authentication

The body attribute of the request will contain the Touchstone user account email address and password. These values
are to be replaced with the actual values for the given user.

The println statements provide execution output to the Jenkins job console log.

The apiKey variable is set for subsequent use in the next web service calls.

If the assert of the apiKey string value evaluates to false, the script will fail and therefore cause the Jenkins job to fail.

// Authenticate with the Touchstone Server and get an API Authorization Token
String apiKey
def httpAuth = new HTTPBuilder('http://touchstone.aegis.net/touchstone/api/authenticate')

httpAuth.request(POST, XML) {
headers.'Accept' = 'application/xml;charset=UTF-8'
headers.'Content-Type' = 'application/xml;charset=UTF-8'
body = '<?xml version="1.0" encoding="UTF-8"?><authenticateRequest xmlns="http://

→˓touchstone.aegis.net/api"><email>test.user@example.com
</email><password>password</password></authenticateRequest>'

response.success = { resp, authenticateResponse ->
println "POST Response Status : ${resp.statusLine}"
println "Authenticate Response info : ${authenticateResponse.info}"
apiKey = "${authenticateResponse.'API-Key'}"
println "Authenticate Response API-Key : ${apiKey}"

}

response.failure = { resp, authenticateResponse ->
println "Failure Status : ${resp.statusLine}"
println "Authenticate Response error : ${authenticateResponse.error}"

}
}

assert apiKey != null : 'Authentication failed! No API-Key returned.'

11.2.1.2 Execute Test

Note that the apiKey value is set for the custom HTTP header ‘API-Key’.

The body attribute of the request will contain the previously defined Touchstone Test Setup name that belongs to the
authenticated user. This value is to be replaced with the actual Test Setup name for the given user.

The println statements provide execution output to the Jenkins job console log.

The execId variable is set for subsequent use in the next web service calls.

If the assert of the execId string value evaluates to false, the script will fail and therefore cause the Jenkins job to fail.

// Execute a Test Setup
String execId
def httpExecute = new HTTPBuilder('http://touchstone.aegis.net/touchstone/api/
→˓testExecution')

httpExecute.request(POST, XML) {
(continues on next page)

11.2. Jenkins Integration Example 365

Touchstone Documentation, Release 6.2.1

(continued from previous page)

headers.'API-Key' = apiKey
headers.'Accept' = 'application/xml;charset=UTF-8'
headers.'Content-Type' = 'application/xml;charset=UTF-8'
body = '<?xml version="1.0" encoding="UTF-8"?><executeTestRequest xmlns="http://

→˓touchstone.aegis.net/api"><testSetup>
FHIR3-2-0-Connectathon17-Patient-02-Formal-FHIRServer-03-PatientRead--All</testSetup>

→˓</executeTestRequest>'

response.success = { resp, executeTestResponse ->
println "POST Response Status : ${resp.statusLine}"
println "Test Execute Response info : ${executeTestResponse.info}"
println "Test Execute Response exec url : ${executeTestResponse.testExecURL}"
execId = "${executeTestResponse.testExecId}"
println "Test Execute Response exec id : ${execId}"

}

response.failure = { resp, executeTestResponse ->
println "Failure Status : ${resp.statusLine}"
println "Test Execute Response error : ${executeTestResponse.error}"

}
}

assert execId != null : 'Test Execution not started! No test execution id returned.'

11.2.1.3 Wait for Test Execution Completion

Note that the execId value is appended to the testExecution web service call path where the httpExecStatus variable is
declared.

There is no body attribute for this GET request.

The println statements provide execution output to the Jenkins job console log.

The isDone, isPassed and execStatus variables are set and used to determine when to exit the wait while loop.

If none of the loop exit criteria is met, the sleep(15000) call will pause the loop for 15 seconds in order to provide
sufficient time to pass and allow more of the test execution to complete. Although this time can be set to a different
amount, the recommended minimum time to pause is 5 seconds (or 5000 milliseconds).

If the assert of the execStatus string value evaluates to false, the script will fail and therefore cause the Jenkins job to
fail.

// Wait for test execution completion
// IMPORTANT - The Touchstone API requires a minimum wait time of 4 seconds between GET␣
→˓calls to '/api/testExecution'
boolean isDone = false
boolean isPassed = false
String execStatus
def httpExecStatus = new HTTPBuilder('http://touchstone.aegis.net/touchstone/api/
→˓testExecution/' + execId)

while (!isDone) {

(continues on next page)

366 Chapter 11. Continuous Integration

Touchstone Documentation, Release 6.2.1

(continued from previous page)

httpExecStatus.request(GET, XML) {
headers.'API-Key' = apiKey
headers.'Accept' = 'application/xml;charset=UTF-8'

response.success = { resp, testExecStatusResponse ->
println "GET Response Status : ${resp.statusLine}"
println "Execute Status Response info : ${testExecStatusResponse.info}"
execStatus = "${testExecStatusResponse.status}"
println "Execute Status Response status : ${execStatus}"
println "Execute Status Response period : ${testExecStatusResponse.startTime}

→˓ - ${testExecStatusResponse.endTime}"
}

response.failure = { resp, executeTestResponse ->
println "Failure Status : ${resp.statusLine}"
println "Test Execute Response error : ${executeTestResponse.error}"
isDone = true

}
}

// Test for all valid execution completion Touchstone statuses
if (execStatus != null && (execStatus.equals("Passed") || execStatus.equals(

→˓"PassedWarning") || execStatus.equals("Failed")
|| execStatus.equals("Warning") || execStatus.equals("Skipped") || execStatus.

→˓equals("Stopped")
|| execStatus.equals("Completed"))) {
isDone = true
// Test for valid execution passing Touchstone statuses
if (execStatus.equals("Passed") || execStatus.equals("PassedWarning")) {

isPassed = true
}

}
else if (isDone) {

// Catch isDone true before waiting 15 seconds
}
else {

// Wait 15 seconds before checking completion again
sleep(15000)

}
}

assert isPassed : 'Test Execution did not pass! Please examine the test results via the␣
→˓Touchstone web interface.'

11.2. Jenkins Integration Example 367

Touchstone Documentation, Release 6.2.1

11.2.2 Jenkins Job Configuration

The Jenkins job will be configured to execute the Groovy script in a post steps task. The following sections describe
the required entries.

11.2.2.1 Post Steps Initial Configuration

Select the Jenkins job to configure and scroll down toward the bottom of the configuration page to the Post Steps section.

Select the option Run only if build succeeds to insure the Touchstone API calls are only triggered after a suc-
cessful build.

Then select the Add post-build step drop down list.

11.2.2.2 Execute system Groovy script

Select Execute system Groovy script from the drop down list:

368 Chapter 11. Continuous Integration

Touchstone Documentation, Release 6.2.1

11.2.2.3 Groovy script file

Select the Groovy script file option and enter the fully qualified path to the touchstone.groovy script file. Replace
the $SCRIPTS_HOME variable with the fully qualified directory path. Then select the Advanced link.

11.2.2.4 Advanced - Expand Classpath

After the Advanced section is displayed, expand the Classpath text entry field by selecting the down arrow link to the
right.

11.2.2.5 Advanced - Enter Classpath

The Groovy script is executed using an external Groovy SDK and therefore requires all Groovy and supporting libraries
be listed in the Classpath field.

11.2. Jenkins Integration Example 369

Touchstone Documentation, Release 6.2.1

The following is a complete listing of the Groovy library jars and additional supporting library jars that are required
in order to successfully execute the touchstone.groovy script. Replace the $APPS_HOME variable with the fully qual-
ified directory path to the Groovy SDK library files. The highlighted files are supporting jars that were separately
downloaded and added to the directory.

• $APPS_HOME/groovy-2.4.4/lib/ant-1.9.4.jar

• $APPS_HOME/groovy-2.4.4/lib/ant-antlr-1.9.4.jar

• $APPS_HOME/groovy-2.4.4/lib/ant-junit-1.9.4.jar

• $APPS_HOME/groovy-2.4.4/lib/ant-launcher-1.9.4.jar

• $APPS_HOME/groovy-2.4.4/lib/bsf-2.4.0.jar

• $APPS_HOME/groovy-2.4.4/lib/commons-cli-1.2.jar

• $APPS_HOME/groovy-2.4.4/lib/commons-collections-3.2.1.jar

• $APPS_HOME/groovy-2.4.4/lib/commons-logging-1.2.jar

• $APPS_HOME/groovy-2.4.4/lib/gpars-1.2.1.jar

• $APPS_HOME/groovy-2.4.4/lib/groovy-2.4.4.jar

• $APPS_HOME/groovy-2.4.4/lib/groovy-ant-2.4.4.jar

• $APPS_HOME/groovy-2.4.4/lib/groovy-bsf-2.4.4.jar

• $APPS_HOME/groovy-2.4.4/lib/groovy-console-2.4.4.jar

• $APPS_HOME/groovy-2.4.4/lib/groovy-docgenerator-2.4.4.jar

• $APPS_HOME/groovy-2.4.4/lib/groovy-groovydoc-2.4.4.jar

• $APPS_HOME/groovy-2.4.4/lib/groovy-groovysh-2.4.4.jar

• $APPS_HOME/groovy-2.4.4/lib/groovy-jmx-2.4.4.jar

• $APPS_HOME/groovy-2.4.4/lib/groovy-json-2.4.4.jar

• $APPS_HOME/groovy-2.4.4/lib/groovy-jsr223-2.4.4.jar

370 Chapter 11. Continuous Integration

Touchstone Documentation, Release 6.2.1

• $APPS_HOME/groovy-2.4.4/lib/groovy-nio-2.4.4.jar

• $APPS_HOME/groovy-2.4.4/lib/groovy-servlet-2.4.4.jar

• $APPS_HOME/groovy-2.4.4/lib/groovy-sql-2.4.4.jar

• $APPS_HOME/groovy-2.4.4/lib/groovy-swing-2.4.4.jar

• $APPS_HOME/groovy-2.4.4/lib/groovy-templates-2.4.4.jar

• $APPS_HOME/groovy-2.4.4/lib/groovy-test-2.4.4.jar

• $APPS_HOME/groovy-2.4.4/lib/groovy-testng-2.4.4.jar

• $APPS_HOME/groovy-2.4.4/lib/groovy-xml-2.4.4.jar

• $APPS_HOME/groovy-2.4.4/lib/hamcrest-core-1.3.jar

• $APPS_HOME/groovy-2.4.4/lib/http-builder-0.7.1.jar

• $APPS_HOME/groovy-2.4.4/lib/httpclient-4.3.6.jar

• $APPS_HOME/groovy-2.4.4/lib/httpcore-4.3.3.jar

• $APPS_HOME/groovy-2.4.4/lib/ivy-2.4.0.jar

• $APPS_HOME/groovy-2.4.4/lib/jansi-1.11.jar

• $APPS_HOME/groovy-2.4.4/lib/jcommander-1.47.jar

• $APPS_HOME/groovy-2.4.4/lib/jline-2.12.jar

• $APPS_HOME/groovy-2.4.4/lib/json-lib-2.4.jar

• $APPS_HOME/groovy-2.4.4/lib/jsp-api-2.0.jar

• $APPS_HOME/groovy-2.4.4/lib/jsr166y-1.7.0.jar

• $APPS_HOME/groovy-2.4.4/lib/junit-4.12.jar

• $APPS_HOME/groovy-2.4.4/lib/multiverse-core-0.7.0.jar

• $APPS_HOME/groovy-2.4.4/lib/openbeans-1.0.jar

• $APPS_HOME/groovy-2.4.4/lib/qdox-1.12.1.jar

• $APPS_HOME/groovy-2.4.4/lib/servlet-api-2.4.jar

• $APPS_HOME/groovy-2.4.4/lib/testng-6.8.13.jar

• $APPS_HOME/groovy-2.4.4/lib/xmlpull-1.1.3.1.jar

• $APPS_HOME/groovy-2.4.4/lib/xml-resolver-1.2.jar

• $APPS_HOME/groovy-2.4.4/lib/xstream-1.4.7.jar

11.2. Jenkins Integration Example 371

Touchstone Documentation, Release 6.2.1

372 Chapter 11. Continuous Integration

CHAPTER

TWELVE

DOWNLOADS

TestScript Editor (Touchstone IDE)

Comprehensive suite of development tools for creating, managing and publishing TestScript resources.

Version Release Date
1.4.2 December 9, 2022 Linux Mac Windows

Touchstone-API zip

Contains schemas and sample messages for using Touchstone API in Continuous Integration.

Version
5.4.0+ touchstone-api.zip

373

/touchstone/download?prod=ide&version=1.4.2&os=linux
/touchstone/download?prod=ide&version=1.4.2&os=mac
/touchstone/download?prod=ide&version=1.4.2&os=windows

Touchstone Documentation, Release 6.2.1

374 Chapter 12. Downloads

CHAPTER

THIRTEEN

RELEASE NOTES

13.1 Touchstone

TS 6.2.1 – January 23, 2024

• Update Subscription page to reflect 2024 Subscription and Commercial pricing.

Bug Fixes
• Terminology server errors for an unknown code system are now preserved and generates a validator warning

message.

TS 6.2.0 – December 18, 2023

Enhancements
• Implemented a proof of concept (POC) of HL7 Version 2 and HL7 Version 3 testing capabilities. Look for more

details in upcoming releases.

• Touchstone Testing IG v2.0.0 released with support for HL7 V2 and V3

• Enhanced the WildFHIR servers to support the use of the fhirVersion mime type attribute

• Enhanced the WildFHIR servers to recognize the FHIR version in the Accept Header and return an OperationOut-
come if it doesn’t match FHIR version of the WildFHIR instance being tested

Bug Fixes
• Corrected Touchstone to honor a trailing forward slash ‘/’ in endpoint URLs

• Corrected Touchstone to honor encodeRequestURL setting in Peer-To-Peer testing

• Corrected Touchstone to allow users to access Test Setups when the list was empty or searched for a Test Setup
that did not exist

• Corrected Touchstone to allow test executions in a ‘Waiting’ state to be stopped if the related TestScript has been
removed

• Corrected Touchstone validation logic to correct duplicate CodeableConcept sub-elements when evaluating pro-
file slicing

• Corrected Touchstone terminology code validation error response handling when code not found in a value set

• Corrected Touchstone FHIR 3.0.2 FHIRPathEngine ‘replace()’ method to focus element reference

• Corrected Touchstone FHIR 4.0.1 FHIRPathEngine ‘dateTime’ equivalency when comparing two dateTime val-
ues without time zone information

• Corrected Touchstone FHIR 4.0.1 FHIRPathEngine ‘exists()’ method to correctly handle arguments

375

Touchstone Documentation, Release 6.2.1

TS 6.1.1 – August 16, 2023

Bug Fixes
• Corrected Touchstone to no longer attempt to use Test System’s authorization when requesting metadata.

• Corrected the Whitelist FAQ in Touchstone documentation.

TS 6.1.0 – June 27, 2023

Enhancements
• Moved the CDSHSandbox folder to the top of the list of Test definitions.

• Per recent FHIR Terminology Server (tx.fhir.org) update to change the incorrect code display warning messages
to error message, the Touchstone Validators have been modified to reset these error messages back to warning
messages.

Bug Fixes
• Corrected Touchstone to always run and display asserts in the order that they appear in the TestScript.

• Corrected encoding the hash (#) value in test executions when TestScript operations request encoding.

• Corrected hover text for CDSHooks Test Systems.

• Corrected pulling of CDS Services statements for Test Systems that do not yet have one associated to the Test
System setup at test execution.

• Corrected error text when CDSHooks Test System CDS Services do not support the hooks being tested.

TS 6.0.0 – May 1, 2023

Enhancements
• The HL7-FHIR and CDS Hooks domains have been merged, allowing users to have FHIR Tests and CDS-Hooks

Tests execute in a single Test Execution, as well as create and run TestScripts with both HL7 FHIR and CDS
Hooks operations in the same TestScript or test execution. This enhancement removes the need for the user to
specify a “Domain” in Touchstone.

• Implemented support for Order-Dispatch hook for CDS Hooks.

• Provide a read-only view to the Implementation Guide (IG) Packages loaded into the public Validators.

• Test Definitions page updated to display the full qualified Test Definition path selected at the top of the page and
then each TestScript display the path after the selected root folder.

• Test Executions page updated to display the assert.description, assert.label, and operation.label when specified
in the TestScript.

• Created WildFHIR instances to support CDS Hooks JWT backend authentication for both RS384 and ES384
signing algorithms.

• WildFHIR updated to FHIR R4 support of CDS Hooks order-select and order-sign hooks.

• Implemented validation support for toDate(), toDateTime() and toTime()

• Updated Rule Outputs documentation to provide additional guidance.

• FHIR validator modification to allow for valid base64 encoded contents in payload.

Bug Fixes
• Corrected Conformance Suite behavior so that when certain variables like “${CURRENTDATE}” are used in

TestScripts, they render properly in the Suite.

• Conformance Results Summary screen corrected to allow selection of any previous Conformance Suite.

376 Chapter 13. Release Notes

Touchstone Documentation, Release 6.2.1

• Corrected CDS-Hooks JWT Assertion to use the CDS Hooks defined interaction when testing with CDS-Hooks
systems (see https://cds-hooks.org/specification/current/#security-and-safety).

• Corrected TestScript upload and execution errors when an operation defined uses a rule output as a sourceid
(fixture) in a test.

• Corrected WildFHIR implementation of: global search parameters in chained search parameters, Bundle ful-
lURL values when _include used, the ‘or’ of ‘less than or equals’ and ‘greater than or equals’ conditions.

• Corrected validation logic to: Bundle searchset validation of self link to handle search results from extended ‘$’
operations, appropriately ignore TestScript ${variable} declarations, correctly handle extension context.

Notes
• There is a known issue impacting CDS Hooks security enabled Test Systems. Touchstone is not able to automat-

ically download the Services Statement for a secured CDS Hooks Test System.

– Symptom: The user will get a TestScript execution failure with an error “Capability Statement is required
in CDS-Hooks testing. Please download it on the Test System screen.”

– Fix to be implemented in subsequent release: Touchstone will be corrected to appropriately download the
Services Statement of a secured CDS Hooks Test System.

– Workaround: The user can manually upload the Services Statement via the Test System screen using the
Upload hyperlink.

TS 5.9.1 – February 2, 2023

Bug Fixes
• Corrected Touchstone parsing of external client request URL to extract the path components - scheme, host, port,

path and query - when period characters are present in the path

• Corrected Touchstone to include PKCE flow elements in the Authorization Request when testing non-OAuth
TestScripts against a PKCE-Enabled Test System

• Corrected Touchstone logic validating OAuth2 Scopes when the requested and/or supported scopes contain wild-
cards

TS 5.9.0 - December 9, 2022

Enhancements
• Updated Test System to allow support for PKCE

NOTE: Specific coding will be required in any TestScript executed against a Test System that is
defined with PKCE enabled. Please reference the online Docs for the specifics of what will need to
be added to the TestScript(s): (Touchstone Docs PKCE guidence)

Bug Fixes
• Corrected logic when Touchstone performs Oauth Scope comparison where wildcards were used in the scope

settings

• Corrected Conformance Suite behavior to properly recognize all TestScripts when TestScripts are added to a
suite folder via the Touchstone IDE

• Corrected Vaidator logic when verifying code values against ValueSets that include ValueSet(s) either as a union
or an interaction

• Corrected Validator comparison precision handling of fixed date and datetime values

• Corrected WildFHIR processing of conditional create and update search logic to account for the possibility of a
returned OperationOutcome in the internal search results

• Corrected WildFHIR search operation with datetime comparison involving time zone

13.1. Touchstone 377

https://cds-hooks.org/specification/current/#security-and-safety
https://touchstone.aegis.net/touchstone/userguide/html/testscript-authoring/oauth-capabilities.html#pkce-functionality

Touchstone Documentation, Release 6.2.1

• Corrected WildFHIR operations that return Bundles to populate the Bundle.entry.fullUrl with the full web context
path

• Corrected WildFHIR search operation results with multiple sort values

• Corrected WildFHIR search operation query logic for date typed search parameters when the search parameter’s
corresponding element is defined as a polymorphic typed element with potential date and period data types

• Corrected WildFHIR search operation query logic to perform exact matching with reference data type values

TS 5.8.0 - November 4, 2022

Enhancements
• Updated the MinimumId logic used by Touchstone to match out of order elements (in non-arrays) and to allow

for extra element in arrays while preserving array order. TestScripts that previously used MinimumId logic may
need to be updated to properly utilize new MinimumId logic

• Enhanced Touchstone to do additional pre-parsing of TestScripts at upload to capture and return any non-XML
schema conformant elements

• Enhanced Touchstone Peer-to-Peer TestScript matching process to more accurately match incoming messages to
the correct waiting test

• Enhanced Touchstone registration to allow users change the primary email address associated to their user reg-
istration and to have an alternate email address that can receive automated emails from Touchstone in addition
to their primary email address

• Updated Conformance Suites to allow a Test Group to be associated to an unlimited number of Conformance
Suites

• Updated the AEGIS Validators to utilize the updated FHIR Java Core Library (based on HL7 Core Library
v5.6.xx). Slight changes in validation messages and validation logic should be expected

• As part of the AEGIS Validator FHIR Java Core Library updates, enhanced Touchstone to properly ignore prim-
itive values containing Testing Platform variable declarations using the ${} delimiters

• Enhanced AEGIS Validator behavior to relax Warning messages to become Informational messages when eval-
uating referenced resources against ElementDefinitions with multiple targetProfile values where the referenced
resource conforms to at least one of the targetProfile entries

• As part of the AEGIS Validator FHIR Java Core Library updates, enhanced Touchstone to properly validate
conditional profile definitions on Bulk Data TestScripts

• Enhanced the AEGIS Validator logic allow for a configured selection of which SNOMED-CT code system spe-
cific edition of FHIR terminology server is used in validation

• As part of the AEGIS Validator FHIR Java Core Library updates, enhanced the AEGIS WildFHIR instances to
utilize the updated validators

Bug Fixes
• Corrected Touchstone user registration to not allow identical email addresses to be used across multiple regis-

trations

• Corrected Conformance Suites Interactions table totals and progress bars to correctly match the conformance
results

• Corrected MinimumId logic to correctly process single quotes in XML payload comparisons

• Corrected Conformance Results Summary screen to default to version=All on initial display

• Corrected Conformance Suites to only show active Test Groups in the Test Group selection drop-downs

• Corrected the informational message text to be more clear when a user deletes a Test System Setup

378 Chapter 13. Release Notes

Touchstone Documentation, Release 6.2.1

• Corrected the Test System Setup screen to properly display the correct data entry fields when users switch between
Oauth Token Types

• Corrected Touchstone to leave the user on the Test Setup screen to allow them to make a correction when the
Test Setup name is in error

• Corrected display of User names when navigating between User pages

• Corrected logic and error messaging for fixture variables that do not populate at Testscript upload

• Corrected the WildFHIR server operation response to correctly populate the Bundle.entry.fullUrl of any addi-
tonally returned resources

TS 5.7.0 - April 22, 2022

Enhancements
• Subscription page updated to include hover over text for all features and provide additional feature information

• Increased the Base URL length on the New Test System and Edit Test System screens from 128 to 512 characters

• Increased Touchstone session inactivity timeout duration to 30 minutes

• Enhanced validation in the check special code systems logic to allow for ValueSets that reference other ValueSets

• Login process now allows user to login with the email used during registration or a Touchstone generated login
based on user name provided during registration. Touchstone generated loginIDs can be found on the User
Settings page

• Enhanced HL7 Core Library validator logic to not cache error messages received from a terminology server
enabling validation to proceed when there is a communication issue with a terminology server

• Updated the automated email text received when Subscription levels change to notify the user to logout and login
to see the Subscription updates applied to their user experience

Bug Fixes
• Corrected exception error encountered on peer to peer testing when ifSupported() executed

• Running tests from Conformance screen no longer requires variables from non-selected tests

• Test Execution no longer uses static authorization headers from previous configurations of the Test System

• Touchstone now allows user to utilize “Execute Again” functionality when a Test Setup fixture name has been
changed

• Corrected FHIRPath evaluation errors related to the prioritization of “and”/”in” operators

• Touchstone now ignores search Bundle entries containing an OperationOutcome or with a search.mode = ‘out-
come’ when doing Smart Deletes in Testscript Setup and Teardown operations

• Corrected Conformance Suites starburst graphic to show orange when tests passed with warnings

• Corrected Conformance Suites starbursts to display correct interactions totals for Pass/Warn when hovering over
the main starburst

• Corrected state parameter size for OAuth2 Dynamic testing in Conformance Suite execution to match the 100
byte state parameter size in Test Setup execution

• Corrected sorting issue in Conformance Suites which was causing unexpected results as test were not run in the
correct order

• Updated validator logic to correctly handle timezones when comparing date and timestamp precision values

• Updated validator logic to correctly handle required bindings for Codeable Concept type elements to ensure that
the rules for them are being evaluated correctly:

13.1. Touchstone 379

Touchstone Documentation, Release 6.2.1

– at least one Coding element SHALL be present

– one of the Coding values SHALL be from the specified value set

– text can be provided as well, and is always recommended, but is not an acceptable substitute for the required
code

• Corrected hover-over text on CapabilityStatement on Test System Configuration to remove references to month
and year

• Corrected Touchstone landing page URLs for the Developer’s Integration Lab and the AEGIS.net main website
so that they directed users to the proper website

TS 5.6.0 - December 10, 2021

Enhancements
• Enhanced test execution warning status display in UI to represent Passed with Warnings as orange in the status

bar, include the count of the warnings in the test count summary, and the execution status will represent Passed
with Warnings rather than just Passed when there are warnings

• Enhanced navigation in Test Executions with more intuitive hyperlinks and expansions

• Enhanced extractScopesNotGranted() to accept and process a context wildcard

• Implemented FHIRPath $index token support

• Updated Touchstone Testing Implementation Guide for the TestScript profile to include ‘history-instance’,
‘history-type’, and ‘history-system’ operations in FHIRPath expression

• Implemented support for history-instance, history-type and history-system

• Enhanced Validator to data drive the terminology server used during validation

• Enhanced Validator to handle slicing definitions with single and multiple discriminators

• Enhanced Validator timezone processing when comparing date and timestamp precision values

• Added functionality to secured version of WildFHIR to allow page caching

• Added Touchstone IPs for Whitelist to documentation

Bug Fixes
• Added check and warning message to prevent user from uploading a TestScript with the same name but a different

extension

• Public Test System no longer requires client secret to be specified

• Fixed “Execute Again” populating incorrect Destination Server

• Resolved issue with auto-pagination incorrectly applying encoding a second time

• Resolved duplicate Authorization Header caused by auto-pagination

• Added logic to prevent test setup execution when no destination specified

• Corrected Touchstone to recognize json extension at test execution

• Implemented validation to prevent a user from executing a test mid-load

• Resolved caching errors caused by unavailable HL7 terminology server

TS 5.5.0 - October 8, 2021

Enhancements
• Added ‘nonce’ and ‘response_mode’ parameters

380 Chapter 13. Release Notes

Touchstone Documentation, Release 6.2.1

• Added ability to manually upload Capability Statement

• Validator now returns as much of the response as it has validated within the timeout period instead of just return-
ing an error

• Developed extension to support TestSetup Dynamic Fixture such that a user can enter their own fixture at test
setup time

• Enhanced Touchstone to allow testing of peer to peer secure systems (OAuth Clients and Servers)

• Added support for history operation, described in Touchstone Testing IG

• Allow organizations to create Test Systems with the same IP address and/or base URL within Touchstone

Bug Fixes
• Unsupported Validators are no longer displayed on User Admin ‘Validator’ selection box

• Updated the Error message thrown when failing a test setup

• Adjusted heirarchy of importance so that “Skipped” is not displayed over “Passed” or “Passed+W”

• Resolved Unexpected error in Conformance Suite when Toggle to XML is selected

• Fixed Incorrect Handling of Placeholders in requestHeader

• Corrected exception thrown when duplicate tests are run in a Conformance Suite

• Conformance Suites - Passed with “W” now showing at ‘Current’ view

• Conformance Suite Published result for a previous suite version is now viewable

• Correction to the resolution of references with Bundle entry nesting so that those references are correctly at-
tributed to their respective Bundles

• Validator now recognizes when Code System Content Mode is “Example” the validation can be performed in-
ternally and a call to the terminology server for validation is no longer made

• Validator no longer restricts refererence types in standalone validation

• Validator with FHIR Path Engine funcResolve method now accounts for local references within a Bundle

• Updated validator to provide more precise error text when a non-existent code system validation error is encoun-
tered

• The validation engine honors the warningOnly = ‘true’ setting even when there is a Touchstone-related error
present

TS 5.4.0 - July 9, 2021

Enhancements
• Touchstone API enhanced to allow passing of a static OAuth token in test execution call

• Automated the Authorization grant flow Oauth login for use via TS API

• Added support for slicing by pattern for FHIR Primitive Data Types

• Updated the slice match by pattern logic to be more lenient when pattern value does not define extension(s)

• Added a pop up message to the “Join Org Group” functionality to provide explanation of test execution visibility

• In support of pagination, the Touchstone Testing Implementation Guide was updated to add new TestScript
Extension for operation pagesNext

• Updated WildFHIR capability statement to include support for $document operation

• Increased the Validator & Touchstone timeout thresholds

13.1. Touchstone 381

Touchstone Documentation, Release 6.2.1

Bug Fixes
• Addressed drop down sort order to be case insensitive

• Addressed issues with result sets being too large for Touchstone

• Addressed null pointer references

• Addressed pull failure on Capability Statement

• Addressed issue with Validator giving warnings when code values were in the required valueset

TS 5.3.0 - March 26, 2021

Enhancements
• Populate Variables for multiple tests with a single input

• Allow Conformance Suites to be set as ‘Inactive’

• Increased Validator timeout parameter

• Increased Rule timeout parameter

• Added filter “waiting for auth” in testscript history

Bug Fixes
• Touchstone doesn’t support _include and _revInclude

• Adding IGV Upload Roles & Validators gives Error

• Smart Config not persisted in Test Systems definition

• Some TestScripts unable to be seen on the Conformance page

• Static Token in Test Systems & Test Setup functionality broken

TS 5.2.3 - February 26, 2021

• Maintenance to Subscription Page

TS 5.2.2 - February 15, 2021

Enhancements
• Security settings, DH key size key size must be able to accommodate larger key size of 8192

• Need rule-accessible operation to read restful links

Bug Fixes
• Get ‘phantom’ Test System Proxy Port has Changed error when certain errors occur in Test Execution

• SourceId declarations in rule asserts not working

• Smart Config unavailable for some testscripts in some circumstances

• Validation slicing logic now accounts for Extension slicing where the extension contains a coded value

• Validator no longer issues Fatal error when ill-formed element is found

• Validator no longer locks up in an Uploading state when it runs into conformance artifacts that cannot be parsed

• Validator resolved “ERROR: This element does not match any known slice for profile” encountered when running
CARIN Validation Tests

• Validator giving invalid Warning - “Expansion not defined” when valid values for a valueset are present

382 Chapter 13. Release Notes

Touchstone Documentation, Release 6.2.1

TS 5.2.1 - January 11, 2021

Enhancement
• Conformance Suite Description allows for up to 1,000 characters

Bug Fixes
• Conformance Suite Org Group visibility does not save properly - includes ALL org groups

• Test Setup List is loading blank pages

• Test Systems that have been deleted are stopping Orgs from building a new Test System with the same base url

• Getting ‘value was null’ for SpecEnum error on validation when capability FHIR version is not supported for
server

• Oauth2 operations not showing up on Categorizations

TS 5.2.0 - December 14, 2020

Enhancements
• FHIR® Bulk Data Access (Flat FHIR) and SMART Backend Services Support

– Support for testing of SMART Backend Services conformance

∗ Updates to Test System Setup to allow for JWT Assertion and details for registering Touchstone to a
SMART Backend Service

– Support for testing of Bulk Data, including validation of ndjson file contents

– Updates to the Touchstone Testing IG to aid in Bulk Data ndjson file content validation - https://touchstone.
aegis.net/touchstone/fhir/testing/history.html

• Enhancement to allow for Invalid Handshake Security Testing

– Allows for test launching for invalid handshake testing that does NOT expect a return

– New ‘manual pass’ test button for visual inspection and passing of tests

• Enhancement to increase the Touchstone Validator runtime timeout to 90 seconds, allowing for large or complex
validations to complete

Bug Fixes
• FHIRPath exists(criteria : expression) support corrected

• Slicing logic correction; added logic to slice matches for discriminator of type ‘type’ when multiple types are
defined

• Correct UTF8 encoded character handling

• Message Bundle reverse references validated properly

• ‘Test System Proxy Port has Changed’ error when proxy port has not actually changed is no longer displayed on
Test Execution results

TS 5.1.0 - October 29, 2020

Enhancements
• OAuth2 and SMART-on-FHIR Support Test Support

– Dynamic authorization for both the OAuth2 Authorization Code and the Client Credentials flows

– Dynamic retrieval of Smart Configuration from SMART-enabled test systems in Touchstone

– Test Support for SMART-on-FHIR Discovery, OpenID Connect (OIDC)

13.1. Touchstone 383

https://touchstone.aegis.net/touchstone/fhir/testing/history.html
https://touchstone.aegis.net/touchstone/fhir/testing/history.html

Touchstone Documentation, Release 6.2.1

– Ability to perform Stand-Alone Launch and EHR-Launch testing

– Enhanced TestScript Authoring to include OAuth2 capabilities (Refer to the Touchstone IG)

– OAuth2 authorizations support in explicit form via new TestScript operations: oauth2-authorize, oauth2-
get-token, oauth2-refresh-token, and oauth2-revoke-token

• Enhancement to allow for Assertion-Only Tests

• Enhancement to allow Tests to continue when Test Assertions fail

• New FHIR4-0-1-Security test scripts to support SMART-on-FHIR testing

• New section in TestScript Authoring Guide that describes the OAuth2 functionality

TS 5.0.0 - June 26, 2020

Enhancements
• Multi-Profile Validator

– Enabling testing against an existing profile and a newer version of that profile for the same FHIR version.

– Touchstone will allow for different validators to exist for a FHIR Version, be associated to a TestScript at
upload, be selected for a test setup at runtime.

– Users with appropriate authority will be able to upload IG Validation Packages, upload testscripts and
associate them to one or more validator packages.

– Please refer to Multi-Profile Testing for more information.

• Conformance Suites
– Enabling organizations to build their own certification program and easily see results of systems who test

against it.

– Conformance Suites can be defined by an organization, can include only the tests needed for certification,
can automatically build conformance reports.

– Conformance Suites are versioned so that organizations can know which version of the suite they tested
against and so that an organization knows which version of the suite organizations are certified against.

– Users can see and select the Conformance Suite they want to certify against.

– Testers and Organizations can easily and instantly see conformance in both a graphical and tabular view.

– Please refer to Conformance Testing and Conformance Suite Authoring for more information.

TS 4.7.4 - Nov 8, 2019

Bug Fixes
• Request URL assertion fails when request parameter contains multiple values for a given parameter with the

AND condition.

• Touchstone does not allow POST requests without a request body.

• Some special characters (e.g. ‘/’ and ‘+’) are not being encoded in request query parameters.

• HTML entity references get resolved in request URLs on Test Script Execution screen. This makes it difficult to
compare what was submitted to what was expected in Peer-to-Peer tests.

TS 4.7.3 - Sept 6, 2019

Enhancement
• Add support for FHIR Connectathon 22 in Analytics/Conformance.

384 Chapter 13. Release Notes

https://touchstone.aegis.net/touchstone/fhir/testing/1.1.0/index.html
http://touchstone.aegis.net/touchstone/testdefinitions?selectedTestGrp=/FHIR4-0-1-Security&activeOnly=true&contentEntry=TEST_SCRIPTS
/touchstone/userguide/html/testscript-authoring/oauth-capabilities.html
/touchstone/userguide/html/multi-profile/index.html#multi-profile-testing
/touchstone/userguide/html/conformance-testing/index.html#conformance-testing
/touchstone/userguide/html/conformance-suite-authoring/index.html#conformance-suite-authoring

Touchstone Documentation, Release 6.2.1

TS 4.7.2 - August 30, 2019

Bug Fixes
• Presence of “_format” parameter on its own in Peer-to-Peer request causes test failure.

• Touchstone appends forward slash (‘/’) to request URLs before query parameters.

• User gets error when accessing Org Groups page before logging in.

TS 4.7.1 - August 05, 2019

Bug Fixes
• Peer-to-Peer ‘requestURL’ assertion is not performing exact match on URL path.

• Peer-to-Peer ‘requestURL’ assertion fails when query parameter contains multiple values in different order from
actual request.

TS 4.7.0 - July 29, 2019

Enhancements
• Improve the performance of Groovy rule assertions in Rules Engine.

• Inform user of incorrect proxy port in submitted URL in peer-to-peer testing.

• Security Improvements.

Bug Fix
• User gets ‘Unexpected error’ if Test Setup is executed without waiting for page to completely load.

TS 4.6.1 - July 01, 2019

Bug Fixes
• Users are blocked from using the same Origin IP address for IP-only peer-to-peer testing at the Connectathon.

• Two users within the same organization that have marked their client test systems for IP-matching are not pre-
vented from launching test execution at the same time in peer-to-peer testing even when the test systems share
the same IP address.

• Touchstone does not inform user on Test Script Execution screen if proxy port of a destination test system changed
after the execution was launched in peer-to-peer testing.

• Touchstone inserts request URL assertion for peer-to-peer tests even when resource id in URL is dynamically
generated on client test system in peer-to-peer testing. This assertion will always fail.

• Previous user agreement version getting displayed to user even after its updated in database.

• Navigating to a page on Test systems list screen throws error if first test system name on list has unencoded special
characters.

• Touchstone is not evaluating variables in assertion FHIR expressions.

TS 4.6.0 - May 29, 2019

Enhancements
• Improve support for IP-only Peer-to-Peer testing. Refer to Peer-to-Peer Testing for details.

TS 4.5.1 - May 24, 2019

Bug Fix
• User getting security violation if multiple browser tabs are used to sign into Touchstone.

13.1. Touchstone 385

/touchstone/userguide/html/client-testing/index.html

Touchstone Documentation, Release 6.2.1

TS 4.5.0 - May 23, 2019

Enhancements
• Add support for CORS in Touchstone API.

• Remove Touchstone-specific USER_KEY and ORG_KEY headers before forwarding request to destination
server in Peer-to-Peer exchanges.

• Add warning message on Test Setup when Test System specification does not match Test Definition specification.

• Security improvements.

Bug Fix
• Touchstone sends POST to Bundle endpoint instead of Base for batch operations.

TS 4.4.6 - May 05, 2019

Bug Fix
• Test Definition upload allows ‘Viewable By’ access to get widened for child test groups via Org Groups.

TS 4.4.5 - Apr 02, 2019

Enhancement
• Support for FHIR 4.0.0 testing in FHIR Connectathon 21.

TS 4.4.4 - Mar 21, 2019

Bug Fix
• User getting error when attempting to access expected request message in peer-to-peer test.

TS 4.4.3 - Mar 21, 2019

Bug Fixes
• User getting error when attempting to download the Touchstone IDE.

• Email notifications being sent without subject line.

• Request URL assertion should work with or without forward slash before query string.

TS 4.4.2 - Mar 18, 2019

Bug Fix
• User getting error when attempting to edit a Test Group.

TS 4.4.1 - Mar 17, 2019

Bug Fix
• User getting error when attempting to delete Test Setup.

• Clicking on ‘CapabStmt’ link on Analytics/Conformance or Published screens throws error.

TS 4.4.0 - Mar 13, 2019

Enhancements
• Validate email authenticity for new user registrations.

• Automatically stop test executions that have been in Waiting status for long period of time.

• Security improvements.

386 Chapter 13. Release Notes

Touchstone Documentation, Release 6.2.1

TS 4.3.6 - Mar 03, 2019

Bug Fixes
• Org Reps that are also Org Group Reps cannot assign the Test Editor role to an org user.

• Paging to last page on Exchanges screen can produce UI error if more exchanges took place during the request.

TS 4.3.5 - Feb 06, 2019

Bug Fix
• Exchange attributes not getting resolved correctly for test systems that have been deleted and recreated.

TS 4.3.4 - Jan 25, 2019

Bug Fixes
• Navigation to resolved rule contents within an assertion on “Test Script Execution” screen causes unexpected

error.

• Navigation to test setup that had destination missing causes unexpected error.

TS 4.3.3 - Jan 15, 2019

Bug Fix
• Navigation to previous Test Setup throws error if Test System used in the setup got deleted and one or more test

scripts in the setup used variables.

TS 4.3.2 - Jan 14, 2019

Enhancement
• Avoid appending default ports (80 for HTTP and 443 for HTTPS) for ‘Host’ header in Peer-to-Peer requests.

Bug Fix
• Test Script Execution and Exchanges screens reporting incorrect ‘Host’ header in Peer-to-Peer requests.

TS 4.3.1 - Jan 10, 2019

Bug Fixes
• Edit Test System screen redirects user to Sign-In screen with error when test system name is changed to a deleted

test system name within the organization.

• When Test Script Execution and its resource screens are accessed without signing in, the user is not redirected
to those screens after signing in.

TS 4.3.0 - Jan 9, 2019

Enhancements
• Support for FHIR 4.0.0. See http://www.hl7.org/fhir/directory.cfml and http://hl7.org/fhir/R4.

• Allow test script authors to deactivate test groups to reduce clutter on Test Definitions tree.

• Resolve placeholders in variable default value during test setup.

• Offer explicit Approve and Reject buttons for membership requests on “Edit Privileges” screen.

• Support for HTTP Method in Test Script operation. See http://build.fhir.org/testscript-definitions.html#
TestScript.setup.action.operation.method

• Security improvements.

• Section 508 improvements on Subscriptions screen.

Bug Fix

13.1. Touchstone 387

http://www.hl7.org/fhir/directory.cfml
http://hl7.org/fhir/R4
http://build.fhir.org/testscript-definitions.html#TestScript.setup.action.operation.method
http://build.fhir.org/testscript-definitions.html#TestScript.setup.action.operation.method

Touchstone Documentation, Release 6.2.1

• User gets error when Test Script or Fixture links are accessed from Test Script Execution and newer versions of
the resources have restricted access.

TS 4.2.2 - Dec 26, 2018

Bug Fixes
• Request URL assertion fails in Peer-to-Peer tests when ‘_format’ parameter is present.

• Operation counts are miscalculated on TestScript Execution screen when request assertion fails in Peer-to-Peer
testscripts.

TS 4.2.1 - Dec 16, 2018

Bug Fix
• Users can bypass duplicate hostname checks on Edit Test System screen by deleting and recreating a test system.

TS 4.2.0 - Nov 26, 2018

Enhancements
• Add support for exclusions of test definitions during upload, parsing, and validations. Refer to Docs for details.

• Improved support for CDS-Hooks testing.

• Section 508 improvements on Test Setup and Test Execution screens.

Bug Fixes
• FHIR profile validation fails in CDSH domain when invoked from Groovy rules.

• Conditional delete should not require Bundle.total on internal search response.

TS 4.1.0 - Oct 18, 2018

Enhancements
• Add support for HTTPS in Touchstone Proxy for SSL/TLS peer-to-peer exchanges.

• Support relative ‘DATE’ and ‘DATETIME’ placeholder in fixtures, request payloads, and URLs.

• Allow INVALID floater (that displays testscript and fixture validation errors) to stick so user can copy the mes-
sages.

• Break up validation error and warning messages into separate line items on Test Script Execution screen.

• Support Media types (MIME types) in TestScript operation ‘accept’ and ‘contentType’ elements.

• Redirect legacy TS Release Notes URL to new HTML version URL.

TS 4.0.2 - Sep 28, 2018

Bug Fixes
• Error message on Exchanges screen is misleading when submitted USER_KEY is incorrect.

• Rules Engine does not handle a capability statement with an invalid FHIR spec version.

TS 4.0.1 - Sep 26, 2018

Bug Fixes
• Upload of sub groups removes other sub groups from Analytics/Conformance screen in non-Sandbox test groups.

• Analytics/Conformance screen errors if user’s organization has not created any test systems.

TS 4.0.0 - Sep 24, 2018

Enhancements

388 Chapter 13. Release Notes

/touchstone/userguide/html/testscript-authoring/exclusions.html

Touchstone Documentation, Release 6.2.1

• Support for CDS Hooks 1.0. See https://cds-hooks.hl7.org/1.0.

• Support for FHIR 3.5.0. See http://hl7.org/fhir/directory.html and http://hl7.org/fhir/2018Sep/index.html.

Bug Fix
• Users with Pending registration status get unexpected error when they navigate to My Placeholders.

TS 3.9.3 - August 20, 2018

Enhancement
• Performance improvements to response time of the Exchanges screen.

Bug Fix
• Trailing space in testscript name causes Test Setup to fail.

TS 3.9.2 - August 6, 2018

Enhancement
• Rebranding of Touchstone UI.

Bug Fix
• Changing values on MySettings page and then switching to Test Definitions page causes error.

TS 3.9.1 - July 24, 2018

Enhancement
• Allow invalid fixtures to get skipped during scheduled validation-runs for negative testing.

Bug Fixes
• Validation-errors permanently disappear on some test definitions that haven’t changed after an upload.

• Validation-errors panel gets clipped on Test Definitions page when user is on lower screen resolutions.

• User gets “No invalid fixtures” immediately upon upload without any indication of a pending validation-run.

TS 3.9.0 - July 23, 2018

Enhancements
• Validate Sandbox test definitions on a scheduled basis.

– Touchstone checks for new and modified test definitions every 5 minutes and validates them using FHIR
Validator.

– Validation errors become visible to owners of the Sandbox test group on Test Definitions screen
e.g. Only members of ‘Organization0005’ will be able to view validation errors under ‘/FHIRSand-
box/Organization0005’ test group.

• Remove subscription requirement for the following read-only Touchstone APIs:

– Retrieve Execution Status

– Retrieve Execution Detail

– Retrieve Script Exec Detail

– Retrieve FHIR Test Report

• New Rules Authoring documentation and clean up of the Rules API.

Bug Fix
• Some links in Touchstone email notifications point to the old Touchstone user guide.

13.1. Touchstone 389

https://cds-hooks.hl7.org/1.0
http://hl7.org/fhir/directory.html
http://hl7.org/fhir/2018Sep/index.html
http://wiki.hl7.org/index.php?title=Using_the_FHIR_Validator
http://wiki.hl7.org/index.php?title=Using_the_FHIR_Validator
/touchstone/userguide/html/continuous-integration/api.html#retrieve-execution-status
/touchstone/userguide/html/continuous-integration/api.html#retrieve-execution-detail
/touchstone/userguide/html/continuous-integration/api.html#retrieve-script-exec-detail
/touchstone/userguide/html/continuous-integration/api.html#retrieve-fhir-test-report
/touchstone/userguide/html/testscript-authoring/rule-authoring/index.html#rule-authoring

Touchstone Documentation, Release 6.2.1

TS 3.8.4 - July 10, 2018

Bug Fix
• Special characters are not handled properly in RequestURL assertions for Peer-to-Peer tests.

TS 3.8.3 - June 17, 2018

Enhancement
• Allow Org Reps of subscribing organizations to control who can upload test scripts. See Upload on UI for more

details.

Bug Fix
• When user signs in after attempt to download touchstone-api.zip, the user is redirected to Test Definitions instead

of Downloads page.

TS 3.8.2 - May 29, 2018

Enhancement
• Allow non-subscribers to execute FHIRSandbox test scripts.

TS 3.8.1 - May 28, 2018

Enhancement
• Disallow uploads of test scripts that contain dot in the name.

Bug fix
• Upload of test group with wider access to test group with Org Group restrictions causes unexpected error.

TS 3.8.0 - May 13, 2018

Enhancements
• TestScript Editor release

– To learn more about it, visit TestScript Editor.

– It can be downloaded from TestScript Editor Download.

• Online HTML-based Documentation

– Can be accessed at Touchstone Docs.

• Add placeholder support for generated UUID values.

TS 3.7.0 - April 23, 2018

Enhancements
• Support for FHIR 3.3.0. See http://hl7.org/fhir/directory.html and http://hl7.org/fhir/2018May/index.html

• Test Result Publishing

– New Analytics/Published screen.

– Organizations at the Project subscription level and above can now publish their test results to make them
publicly viewable.

• Performance improvements to response time of the Test Definitions screen.

• Ability for Groovy rule writers to raise arbitrary warnings and errors in TestScript execution assertions.

• Warning message on Analytics/Conformance screen when Interaction Counts are reset.

Bug fix

390 Chapter 13. Release Notes

/touchstone/userguide/html/testscript-authoring/ui-upload.html#upload-on-ui
/touchstone/userguide/html/testscript-authoring/testscript-editor.html#testscript-editor
/touchstone/userguide/html/downloads.html#downloads
/touchstone/userguide/html/index.html
http://hl7.org/fhir/directory.html
http://hl7.org/fhir/2018May/index.html

Touchstone Documentation, Release 6.2.1

• Org short name change does not propagate to test definitions

TS 3.6.2 - Jan 25, 2018

Bug fixes
• The extended operation ‘$validate-code’ shows up under ‘$validate’ band on Analytics/Conformance screen.

• The TestScript and HL7 FHIR links on home page point to old github URLs.

TS 3.6.1 - Jan 22, 2018

Enhancement
• Add support for $versions operation. See http://wiki.hl7.org/index.php?title=201801_Versioned_API

TS 3.6.0 - Jan 14, 2018

Enhancements
• Add support for FHIR 3.2.0. See http://hl7.org/fhir/directory.html and http://hl7.org/fhir/2018Jan/index.html

• Third-party library upgrades.

TS 3.5.3 - Dec 13, 2017

Enhancement
• Allow deletion of Org Groups and edits to their names.

TS 3.5.2 - Dec 04, 2017

Enhancements
• Allow Org Group members to filter by “My Org Groups” on the Test Executions and Exchanges screens.

• Allow Org Group Reps to set the visibility of member-organization test-executions to “Org Group (Open)” or
“Org (Private)”. Organizations that are part of “Org Group (Open)” org groups can view each other’s test ex-
ecutions. Those that are part of “Org (Private)” cannot. Org Group Reps can view test executions of member
organizations regardless of the flag setting.

• Allow Touchstone to be selected as the default FHIR Client in peer-to-peer test scripts. This allows for the same
test scripts to be used for both client-server (peer-to-peer) testing as well as server-only testing.

• Allow Test System owners to bypass origin IP checks in peer-to-peer testing.

Bug fix
• Users that are not signed-in can view test scripts that have been uploaded with access of “Can be viewed by My

organization”.

TS 3.5.1 - Nov 21, 2017

Enhancements
• Improved email notifications during registration and other events.

TS 3.5.0 - Nov 12, 2017

Enhancements
• Subscription services. You can learn more at the new Subscription page.

• Users can upload Test Scripts to Touchstone under the Starter plan.

• Improvements to operation paths on Analytics/Conformance screen.

TS 3.4.16 - Sept 27, 2017

Bug fix

13.1. Touchstone 391

http://wiki.hl7.org/index.php?title=201801_Versioned_API
http://hl7.org/fhir/directory.html
http://hl7.org/fhir/2018Jan/index.html

Touchstone Documentation, Release 6.2.1

• Status-count meter is broken on Test Execution and Analytics/Conformance screens. This issue can be seen on
latest Chrome release (Version 61.0.3163.100).

TS 3.4.15 - Sept 11, 2017

Bug fix
• In Peer-to-Peer exchanges (client-side testing), Touchstone forwards requests to the old Base URL of a test system

when the test system Base URL changes.

TS 3.4.14 - Sept 05, 2017

Enhancements
• Improve error reporting in Setup Deletes when test system returns invalid JSON response during test execution.

• Improve error reporting when variables cannot be resolved during test execution.

TS 3.4.13 - Sept 03, 2017

Enhancements
• Improve error reporting when conformance statement cannot be parsed.

• Improve error reporting when response from Test System cannot be parsed.

TS 3.4.12 - July 31, 2017

Enhancement
• Add support for different sets of Test Groups for the same FHIR version across different months on Analyt-

ics/Conformance screen.

Bug fix
• Default Accept and Content-Type headers are created alongside explicit Accept and Content-Type request head-

ers. This issue arose in new test scripts that define Accept and Content-Type headers explicitly using <request-
Header> element in TestScript operation definition and not the usual <accept> and <contentType> elements.

• Test System formats field is not updated in Touchstone based on actual CapabilityStatement format field value
after CapabilityStatement download

TS 3.4.11 - July 19, 2017

Enhancement
• Improve error reporting when Bundle total is non-numeric in search response during Setup.

Bug fix
• Do not display response links on Exchanges screen if a response has not been received by Touchstone.

TS 3.4.10 - July 10, 2017

Enhancements
• Add support for GraphQL operation in Touchstone. See http://build.fhir.org/graphql.html and http://graphql.org/

for details.

• Add support for FHIRPath PATCH in Touchstone. See http://build.fhir.org/http.html#patch and http://build.fhir.
org/fhirpatch.html for details.

• Exclude external resources referenced in HTML responses from Peer-to-Peer interceptions on Exchanges screen.

TS 3.4.9 - July 2, 2017

Enhancements
• Reject Peer-to-Peer exchanges originating from web crawlers e.g. GoogleBot.

392 Chapter 13. Release Notes

http://build.fhir.org/graphql.html
http://graphql.org/
http://build.fhir.org/http.html#patch
http://build.fhir.org/fhirpatch.html
http://build.fhir.org/fhirpatch.html

Touchstone Documentation, Release 6.2.1

• Validate actual origin of the peer-to-peer request against Origin test system in Test Setup.

• Do not capture CORS Pre-Flight OPTIONS request in peer-to-peer message exchanges.

Bug fix
• Interaction counts on TestScript Execution screen get reset after each Peer-to-Peer exchange.

TS 3.4.8 - June 21, 2017

Bug fix
• Touchstone is not handling versionId in FHIR resource when it’s specified in wrong format.

TS 3.4.7 - May 28, 2017

Enhancements
• Change “Conformance Statement” to “Capability Statement” where appropriate in Touchstone.

• Improve error reporting when invalid operator value is used for confOperator in rule templates.

Bug fixes
• Supported flag is incorrectly set on some of the main sunburst bands on Analytics/Conformance screen.

• Message on parent of outermost band is misleading on Analytics/Conformance screen when some but not all
interactions are supported.

• Rule parameter values are not properly listed on Ruleset popup.

• Clicking on Ruleset link causes error if ruleset uses same rule more than once.

TS 3.4.6 - May 4, 2017

Enhancement
• Allow users to filter for failures on Test Execution and TestScript Execution screens. This is helpful when the

number of test scripts and tests is large in the run.

Bug fix
• Incorrect icon/flag is displayed for unsupported bands in main sunburst on Analytics/Conformance screen.

TS 3.4.5 - May 3, 2017

Bug fix
• The sunbursts on Analytics/Conformance screen shift a little when user hovers over them. This makes it harder

for user to click on a particular band.

TS 3.4.4 - May 2, 2017

Enhancement
• Add support for FHIR 3.0.1. See http://hl7.org/fhir/directory.html and http://hl7.org/fhir/STU3/index.html

Bug fixes
• Patch interaction shows up as supported on Analytics/Conformance screen even though capability statement does

not declare support for it.

• Search param ‘_include’ at the resource level shows up as unsupported on Analytics/Conformance screen even
though capability statement declares support for it.

TS 3.4.3 - April 14, 2017

Bug fix

13.1. Touchstone 393

http://hl7.org/fhir/directory.html
http://hl7.org/fhir/STU3/index.html

Touchstone Documentation, Release 6.2.1

• Upgraded Groovy to latest version (2.4.10). This got rid of memory leak during TestScript rule execution. See
https://issues.apache.org/jira/browse/GROOVY-7683 for details.

TS 3.4.2 - March 22, 2017

Enhancement
• Add support for FHIR 3.0.0. See http://hl7.org/fhir/directory.html and http://hl7.org/fhir/STU3/index.html

Bug fix
• Formats-Supported checkboxes are misaligned in Firefox on New/Edit Test System screens.

TS 3.4.1 - March 1, 2017

Enhancement
• Test Groups renamed

– Top-level test groups under Test Definitions are now listed with latest version at the top.

– Basic test scripts have been broken up into alphabetical groupings to allow for future growth and easier
navigation.

TS 3.4.0 - Feb 17, 2017

Enhancement
• Assertion dependencies

– Touchstone can now conditionally evaluate assertions based on the state of message headers/content as well
as support in the test system’s conformance statement.

TS 3.3.8 - Jan 14, 2017

Bug fixes
• Conformance statement parsing fails when conformance statement contains lists with empty items.

• Test Systems screen shows no items on some pages.

TS 3.3.7 - Jan 13, 2017

Enhancement
• Msc improvements to UI response times.

TS 3.3.6 - Jan 12, 2017

Bug fix
• Extended-Operation interactions are not matched correctly against the Conformance Statement. Even though

conformance statement declares e.g. “‘reference’ : ‘OperationDefinition/ValueSet-validate-code’”, Touchstone
expects “‘reference’ : ‘OperationDefinition/valueset-validate-code’”, and flags the interaction as unsupported.
Either reference will now work.

TS 3.3.5 - Jan 11, 2017

Enhancements
• Support for FHIR TestReport. Users can now retrieve test results via Touchstone API in FHIR TestReport format.

Details can be found in the UserGuide.

• Peer-to-Peer Testing: Touchstone should not auto-retrieve conformance statements during test execution and once
a day for test systems that are marked as purely client test systems. Users should still have the option of manually
downloading the conformance statement on the UI.

394 Chapter 13. Release Notes

https://issues.apache.org/jira/browse/GROOVY-7683
http://hl7.org/fhir/directory.html
http://hl7.org/fhir/STU3/index.html

Touchstone Documentation, Release 6.2.1

• Peer-to-Peer Testing: Client request-submission attributes should be more prominent on the Script Execution
screen.

• Peer-to-Peer Testing: Default checks should be made during test execution for HTTP method and URL submis-
sion by the client so bad submits can be caught upstream and reported to user.

TS 3.3.4 - Jan 05, 2017

Bug fix
• Analytics/Conformance screen throws error when number of test scripts exceeds 256 for a given specification.

TS 3.3.3 - Jan 03, 2017

Enhancement
• Support for SSL- cert communication between Touchstone and Test Systems.

TS 3.3.2 - Dec 29, 2016

Bug fixes
• Resource profile links are broken for relative references on Conformance/Capability statement popup.

• Navigating to XML view on Conformance/Capability statement popup still displays JSON content.

TS 3.3.1 - Dec 26, 2016

Enhancements
• Add system-generation assertion for Bundle/total presence in system-generated search response in Setup.

• Display more descriptive text on the UI when Touchstone is unable to connect to target test system.

Bug fixes
• Assertion for Content-Type does not check for correct FHIR mime-type.

• Detect infinite loop when deletes fail for system-generated search/delete operations in Setup.

TS 3.3.0 - Dec 20, 2016

Enhancements
• Add support for FHIRPath evaluation when used in TestScript “variable.expression”, “assertion.expression”, and

“assertion.compareToSourceExpression” elements.

The Advanced-FHIR1-8-0, Basic-FHIR1-8-0, and Connectathon14 test scripts use FHIRPath expres-
sions for some assertion evaluations.

Details can be found at http://hl7.org/fhirpath/index.html

Touchstone continues to support “variable.path”, “assertion. path”, and “assertion. path” elements
where built-in XPath/JSONPath is executed.

TS 3.2.5 - Dec 19, 2016

Bug fixes
• System errors when user attempts to update the access token on Test Setup screen (instead of Test System screen).

TS 3.2.4 - Dec 13, 2016

Enhancements
• Add support for FHIR 1.8.0.

• Attempt more mime-types during Conformance Statement retrieval. Update Test System “Spec” and “Formats-
Supported” fields in Touchstone based on values in retrieved Conformance Statement.

13.1. Touchstone 395

http://hl7.org/fhirpath/index.html

Touchstone Documentation, Release 6.2.1

Bug fixes
• Required check for Destination field fails in Safari on TestSetup screen causing test execution to fail.

• Test Scripts table does not show up on Analytics/Conformance screen in Safari.

TS 3.2.3 - Dec 03, 2016

Enhancements
• Allow users to see the state of their existing conformance statements in Touchstone on the Test Systems, Test

System, and Edit Test System screens without having to download every time.

• Keep search field on Analytics/Conformance screen visible at all resolutions.

Bug fixes
• Peer-to-Peer Test Execution matching does not work by IP address.

• Interaction counts do not get updated during test execution in peer-to-peer exchange when source fixture is miss-
ing.

TS 3.2.2 - Dec 01, 2016

Enhancements
• Add placeholder support for relative date and date time computations and replacements in fixtures.

Bug fixes
• Do not allow users outside an organization to delete a test system even if the test system is publicly editable.

• Monthly dropdown on Analytics/Conformance screen does not show Sept 2016.

TS 3.2.1 - Nov 29, 2016

Enhancements
• On a daily basis, Touchstone will pull conformance statement for all test systems that have checked “Allow

Touchstone to pull conformance statement on scheduled basis” on Test System screen. Touchstone will also
attempt to pull conformance statement during test execution if previous attempts had failed.

• Enforce timeout in TestScript operation calls.

TS 3.2.0 - Nov 28, 2016

Enhancements
• Ability for users to delete test system even if it has test executions.

• Ability for users to change test system name, base URL, and specification even if the test system has test execu-
tions.

• Ability for two organizations to choose the same test system name. Display Organization in TestSetup test system
drop-down.

• New filter option on Test Executions screen that shows all test executions against the organization’s test systems
including those launched by users in other organizations.

• Ability to download Conformance statement for the month within Analytics/Conformance screen.

• Display link to Conformance statement on Analytics/Conformance screen.

• Show test systems for the signed-in user’s organization on Test Systems screen by default.

• Conformance icon on Test Execution screen indicates one or more test scripts have unsupported interactions but
screen does not indicate which test script in the list is the culprit. User has to click on each test script execution
to find out. Test Execution screen now shows which test scripts in the list have unsupported interactions.

396 Chapter 13. Release Notes

Touchstone Documentation, Release 6.2.1

• Display icon for unsupported interactions in orange instead of red on Test Execution and Script Execution screens.

Bug fixes
• Clicking on XML on Conformance statement popup retrieves JSON Conformance statement. It should retrieve

XML Conformance statement.

• Conformance floater overflows page if conformance statement supports over 7 formats.

TS 3.1.0 - Nov 14, 2016

Enhancements
• Improve error handling and reporting during Test Script upload by Test Editors.

• Add support for http://build.fhir.org/testscript-definitions.html#TestScript.setup.action.operation.requestId .

• Improve handling of non-existent elements during JSON path evaluation in TestScript assertions.

Bug fixes
• Execution fails for test script that does not contribute towards Analytics/Conformance.

• Request parameters are being decoded twice which has caused errors during paging of some TestSetups.

TS 3.0.7 - Oct 18, 2016

Enhancements
• Improve error reporting when minimum check fails for unexpected element type.

Bug fixes
• Addition of Other column on Analytics/Conformance screen is causing overlap of tables

• ConditionalDelete in Setup fires unnecessary Search operations for JSON.

• When user selects unsupported Domains (e.g. NwHIN instead of HL7 FHIR), Analytics/Conformance screen
throws error.

TS 3.0.6 - Oct 10, 2016

Enhancements
• Conformance statements are validated after download and validation errors are displayed on the conformance

popup.

• Resolve variables in minimum fixtures.

Bug fixes
• TestScript setup operations/interactions are not counted correctly against the conformance analytics.

• Assertions against header values should be case-insensitive.

• TestScript popup is not handled properly when session has expired.

TS 3.0.5 - Oct 04, 2016

Enhancements
• Add ‘Other’ column on Analytics/Conformance and Script Execution screens that captures the rest of the inter-

action counts besides Pass and Fail.

Bug fixes
• Background color for C icon for conformance statements on Test Execution and Test Execution list screens is

inconsistent with C icon on Script Execution screen.

13.1. Touchstone 397

http://build.fhir.org/testscript-definitions.html#TestScript.setup.action.operation.requestId

Touchstone Documentation, Release 6.2.1

TS 3.0.4 - Oct 02, 2016

Enhancements
• Add support for Basic Authentication in Touchstone API.

TS 3.0.3 - Sept 29, 2016

Enhancements
• Exclude entire test script from “% conformant” if any interaction is unsupported and user selects “Exclude Un-

supported”. This is needed because of dependencies between tests/operations with a TestScript.

• Add support for conditionDelete/single, conditionalDelete/multiple, updateCreate, and conditionalRead to
conformance-based testing.

• Move Test Systems link to the top menu so it’s visible at all times.

• New set of options for execute access on New Test System and Edit Test system screen allows separation of
view-access from execute-access. Test systems that use access tokens can have execute-access restricted without
affecting view-access.

• Admin screens for maintenance.

TS 3.0.2 - Sept 18, 2016

Bug fix
• HTML returned in HTTP header values throws off the ScriptExecution and Message detail screens.

TS 3.0.1 - Sept 17, 2016

Enhancements
• Allow users to access test executions by other users from Analytics/Conformance screen if target system is owned

by user’s org.

Bug fixes
• Search in test assertions for headers in HTTP requests and responses should be case-insensitive based on HTTP

spec.

• System throws error when user has not defined any test systems yet and attempts to go to Stats/Conformance
screen.

• Popups for request and response message detail lost their CSS styles in 3.0.0

TS 3.0.0 - Sept 15, 2016

Enhancements
• Conformance-based Testing

– New Analytics/Conformance screen allows users to monitor the conformance of their tests systems to a
specification based on test scripts available in Touchstone.

– Tests can be executed from within this new screen.

– Details can be found in the Touchstone User Guide here.

• Improve default TestSetup name generation.

• Allow Access Token to get set on Test System Edit screen for test systems that require OAuth2.

• Inform users of interactions that are supported (or unsupported) by a test system’s conformance statement on
Script Execution screen.

398 Chapter 13. Release Notes

Touchstone Documentation, Release 6.2.1

TS 2.4.8 - Sept 11, 2016

Enhancement
• Add support for STU3 Ballot+ FHIR Mime Type (‘application/fhir+json’ and ‘application/fhir+xml’)

TS 2.4.7 - Sept 05, 2016

Enhancement
• Change Test Group names to better align with FHIR specification versions.

TS 2.4.6 - Aug 12, 2016

Enhancement
• Added support for FHIR STU3 Ballot.

TS 2.4.5 - July 07, 2016

Bug fix
• Test engine producing errors with negative testing of update operation.

TS 2.4.4 - June 26, 2016

Bug fixes
• Upload of TestScript sub-folder does not overwrite existing test scripts.

• Header value in TestScript-operation that contains a colon will not appear on Script Execution screen.

• Table columns on TestScript-Execution screen widen and then shrink on screen refresh.

TS 2.4.3 - June 18, 2016

Enhancements
• Add support for verifying request URL contents.

– This is useful in Client-side/Peer-to-Peer testing.

• Do not set ‘Content-Type’ and ‘Accept’ headers in request when TestScript has explicitly specified ‘none’ for
operation contentType and accept.

– This is useful in verifying test-system behavior when these headers have not been set.

TS 2.4.2 - June 13, 2016

Bug fix
• Test Engine ignores response assertions when request assertions are present in peer-to-peer operations.

TS 2.4.1 - June 07, 2016

Bug fix
• Upload of fixtures-only sub-directory by Test Editor causes Test Definitions to become inaccessible.

TS 2.4.0 - May 23, 2016

Enhancements
• Touchstone API

– Test executions can be launched and monitored via remote RESTful web services. This allows for inte-
gration of Touchstone test executions as part of your internal automated regressions tests (e.g. as part of
Continuous Integration).

13.1. Touchstone 399

Touchstone Documentation, Release 6.2.1

– The XML and JSON schemas for Touchstone API are available within the schemas folder in touchstone-
api.zip.

– Details can be found in the Touchstone User Guide here.

– Details on CI integration with Jenkins can be found here.

• CAPTCHA during registration to prevent robot registrations.

• Software upgrades

TS 2.3.2 - May 06, 2016

Bug fix
• Clicking on History for a test definition on Test Definitions screen throws error.

TS 2.3.1 - May 05, 2016

Enhancements
• Added XML-Patch support.

TS 2.3.0 - April 20, 2016

Enhancements
• Rules Engine

– Complex rules against message headers and body (that go beyond what TestScript assert previously sup-
ported) can now be evaluated using the new Rules Engine.

– These rules can be used via the new TestScript.rule, TestScript.ruleset, TestScript assert.rule, and TestScript
assert.ruleset elements.

– Rules can be implemented in the following languages:

∗ Groovy

∗ Schematron

∗ XSLT

Support for additional languages will be added in the future.

– Test editors can create, upload, and edit rule and ruleset definitions on the UI.

– Access to rule and rule definitions is controlled the same way that access to test scripts and fixtures are
controlled (by user, organization, and organization-group).

Bug fix
• Fixed XXE vulnerabilities.

TS 2.2.3 - April 13, 2016

Bug fix
• Assertion in TestScript.setup system-generated delete operation is checking for response code 200. It should also

check for 204.

TS 2.2.2 - April 11, 2016

Enhancements
• Rename “FHIR DSTU 2.2” to “FHIR-STU-3-Candidate”

TS 2.2.1 - April 01, 2016

Enhancements

400 Chapter 13. Release Notes

Touchstone Documentation, Release 6.2.1

• Add support for FHIR DSTU 2.2.

TS 2.2.0 - March 24, 2016

Enhancements
• Test Script and Fixture Versioning

– When the content of an existing test script or fixture changes (via an upload), the test execution screens will
inform the user that newer version of the test script and/or fixture is available.

– The system will continue to pull in latest test scripts and fixtures on test re-execution.

– Old test scripts and fixtures (before versioning became available) will assume the version 0 in old test
executions.

• Capture Test System conformance statement for each test execution

– End-users can now see the conformance statement of each test system involved in test execution at the time
of execution on Test Execution screens. Until now, Touchstone only made the latest conformance statements
available to end-users on Test System screens.

• Improvements in conformance checks and display of conformance statements.

– Some FHIR servers can only return conformance statements in one format. Touchstone now attempts to
retrieve conformance statements first in JSON and then in XML if JSON fails. In the past, Touchstone only
attempted XML conformance statement retrieval during conformance checks.

• Validations per specification version.

– Profile and resource validations during execution of test script FHIR spec 2.1 will be performed against
FHIR spec 2.1 Validator. Similarly, profile and resource validations in 2.0 test script executions will be
performed against FHIR spec 2.0 Validator, etc. In the past Touchstone validated only against latest FHIR
validator.

∗ FHIR spec 2.0 corresponds to FHIR DSTU 2.0 (v1.0.2-7202) - DSTU 2 (Official version) with 1
technical errata (Permanent home); http://hl7.org/fhir/DSTU2/index.html .

∗ FHIR spec 2.1 corresponds to FHIR DSTU 2.1 (v1.2.0-7447) - Connectathon 11 Snapshot (temporary);
http://hl7.org/fhir/2016Jan/index.html .

TS 2.1.9 - March 11, 2016

Bug fix
• Concurrent test script execution can cause operation execution data collisions.

TS 2.1.8 - February 28, 2016

Bug fixes
• XML Minimum assertion evaluation failure when minimum file contains attribute with resource name.

• JSON Minimum assertion evaluation failure for resource “List” which has nested entry elements within Bundle.

TS 2.1.7 - February 27, 2016

Bug fix
• Test Definition tree expands and contracts on page load.

TS 2.1.6 - February 25, 2016

Bug fix
• Have system-generated search and delete operations in Setup and Teardown honor the Accept header specified

in the delete operation.

13.1. Touchstone 401

http://hl7.org/fhir/DSTU2/index.html
http://hl7.org/fhir/2016Jan/index.html

Touchstone Documentation, Release 6.2.1

TS 2.1.5 - February 25, 2016

Enhancements
• New Landing Page for guest users with following information:

– What Touchstone is.

– Links to tutorials.

– Software updates.

– Feeds.

Users can bypass the landing page by bookmarking the “Sign In” page. Users continue to get redi-
rected to their last set of Test Definitions after signing in. You can always get to the Landing Page by
clicking on the Touchstone logo.

TS 2.1.4 - February 21, 2016

Enhancements
• Org Group membership

– Admins can now make users the Org Group Rep of Org Groups.

– Org Reps can request their organizations to become members of Org Groups.

– Org Group Rep can approve or reject such requests.

Access to resources such as Test Definitions and Test Systems can be limited to a group of organiza-
tions via Org Group functionality.

TS 2.1.3 - February 08, 2016

Enhancements
• Display the org groups that a user and organization belong to on the appropriate screens.

• Capture changes to Organization name and to Test System name and baseUrl in User History.

Bug fixes
• Bad baseURL throws off Proxy URL generation during Test System creation

• ‘No test setups’ is displayed twice when a user initially lands on ‘Test Setup’ screen.

TS 2.1.2 - February 06, 2016

Bug fixes
• XPath functions are not always taken into account in XPath evaluation during test execution

TS 2.1.1 - February 04, 2016

Bug fixes
• Multiple variables in URL path not getting resolved properly in some cases during operation execution.

• System does not handle relative references to fixtures (in test scripts) that contain ‘..’.

TS 2.1.0 - February 03, 2016

Enhancements
• Allow Org Reps to view User History for members of the organization. The following events are captured:

– User registers

– User requests membership

402 Chapter 13. Release Notes

Touchstone Documentation, Release 6.2.1

– User membership gets approved

– User membership gets rejected

– User membership gets changed back to Pending

– User roles change

– User creates an organization

– User cancels a membership request

– User status get deactivated by admin

– User status gets reactivated by admin

– User gets locked because of too many password attempts

– User gets locked manually by admin

– User gets unlocked by admin

– User resets his/her password

– User password gets reset by org rep or admin

– User regenerates the Org Key for his/her organization

– User regenerates his/her User Key

• Support for Organization Groups

– Admins can now create organization groups. An organization can belong to multiple organization groups.
Test scripts, fixtures, and test systems can now be tied to organization groups. This allows members of
multiple organizations to share resources and control access across specific organizations.

• Redirect user to Test Definitions if an old test script has been removed.

• After sign in, redirect org reps to users screen if they have pending registrations.

Bug fixes
• System errors when test setup is deleted in dual session and executed in another.

TS 2.0.4 - January 25, 2016

Enhancements
• Allow users to switch organizations more easily.

• Improve error reporting in test script SETUP execution when entries cannot be found.

• Search criteria not included in message to user when 0 records returned in Test Definitions search.

Bug fixes
• Old sort cookie value is not being handled by Touchstone. This causes error when some users land on Test

Definitions screen.

• Touchstone attempts to parse FHIR resource out of HTML response (when operation errors).

TS 2.0.3 - January 10, 2016

Enhancements
• Add support for FHIR transaction operation

Bug fixes
• Resource type assertions are failing when operation response contains BOM characters.

13.1. Touchstone 403

Touchstone Documentation, Release 6.2.1

• The presence of bad html in the operation response throws off the page’s styles.

TS 2.0.2 - January 08, 2016

Enhancements
• Improve Test Setup default name generation.

• Email other org reps when one org rep approves or rejects user registration.

• Indicate the expected Content-Type and Accept headers for client-side operations to help users submit the right
request the first-time.

Bug fixes
• If the test scripts referred to by a Test Setup have all be removed, then system throws misleading error when user

tries to re-execute the Test Setup.

• Client-side patch operation was not working properly.

• Execution Status filter drop-down on Test Executions screen is out-of-order, has spaces, and duplicates

• Touchstone refuses to process an XML response with a DOCTYPE declaration.

TS 2.0.1 - January 07, 2016

Enhancements
• Improve error reporting when a request or response message cannot be parsed.

• Increase the width of the Origin and Destination drop-downs in Test Setup.

• Touchstone 2.0 User Guide.

Bug fixes
• The Supported Profiles column gets squashed on Test System list screen.

• Conformance retrieval needs to use access tokens for test systems that require OAuth2.

TS 2.0.0 - January 06, 2016

Enhancements
• Support for Client-side (Peer-to-Peer) Testing.

– Origin elements are now presented on Test Setup and Test Execution screens as Touchstone may not be the
origin for all message exchanges.

– Support for multiple destinations in Test Setup and Test Execution.

– Conformance checks are being done against multiple origins and destinations that could be involved in test
executions.

• Support for user-defined variables in Test Setup.

• Test Setup (and reexecution of new Test Executions) will pull latest test scripts.

– There is no need any more to create new Test Setups when test scripts change in the system.

– When user clicks on Test Script, Fixture, and Profile links in old test executions, the latest Test Scripts and
Fixtures are NOT displayed. The ones that were used at the time of execution are displayed.

• New Exchanges screen that displays all messages exchanges (Touchstone and Client initiated messages).

– This screen allows users to filter for Response codes and overall Operation assertion status for their test
systems. This allows users to find all “bad” response codes from their test systems, for example.

404 Chapter 13. Release Notes

Touchstone Documentation, Release 6.2.1

– This screen is also useful in Client-side testing as request messages that do not match the user test execution
can be found here.

• Improvements to Test Script Execution screen layout.

• Support for PATCH operation.

• Support for conformance operation via HTTP OPTIONS.

• Addition of Connectathon11 Test Scripts.

– Track 1 - Patient

– Track 2 - Terminology

– Track 3 - CDS on FHIR

– Track 4 - DAF

– Track 6 - FHIR Genomics

– Track 7 - Lab Order Lab Report

– Track 9 - PATCH

• Upgrade of FHIR Validator to FHIR DSTU2 (v1.2.0-7493) a.k.a DSTU 2.1 Java RI - current trunk as of
12/30/2015.

• TestSetup search is now wild-carded on Test Execution search page.

• Link to test system’s Conformance statement is now provided on Test System and Test System list screens.

13.2 TestScript Editor

IDE 1.4.2 - December 9, 2022

Bug Fix
• Corrected issue impacting Conformance Suites when a single TestScript was uploaded via the TS IDE

IDE 1.4.0 - June 26, 2020

Enhancements
• Support for Multi-Profile Testing and Conformance Testing

IDE 1.3.0 - Jan 9, 2019

Enhancement
• Support for FHIR 4.0.0. See http://www.hl7.org/fhir/directory.cfml and http://hl7.org/fhir/R4.

IDE 1.2.2 - Nov 26, 2018

Enhancement
• Upload dialog should default to the last Spec selected by user.

IDE 1.2.1 - Sep 24, 2018

Enhancements
• Added features like “Check for Updates” and “Install New Software..”, so users can find the latest released

versions within the TestScript Editor itself.

• Added support to automatically check for updates and notify the user when new updates are available.

13.2. TestScript Editor 405

/touchstone/userguide/html/multi-profile/index.html#multi-profile-testing
/touchstone/userguide/html/conformance-testing/index.html#conformance-testing
http://www.hl7.org/fhir/directory.cfml
http://hl7.org/fhir/R4

Touchstone Documentation, Release 6.2.1

• Removed Java JRE bundled with TestScript Editor to give more flexibility for user to use a different JRE.

• Added support for FHIR 3.5.0 and CDS Hooks 1.0 specifications.

Bug Fix
• The “Spec” dropdown in “Upload to Touchstone” dialog was editable. It is now read-only.

IDE 1.1.0 - August 6, 2018

Enhancements
• Rebranding of TestScript Editor.

• Java JRE is now included in the TestScript Editor so user would not need to install Java.

• New toolbar menu item for contacting Touchstone Support.

IDE 1.0.0 - June 17, 2018

Enhancements
• Performance improvements during upload to Touchstone via new authentication mechanism.

• Added support for creation of Groovy Rules.

• Integration with new Simplifier API for JWT authentication.

IDE Beta-0.6.0 - May 29, 2018

Enhancement
• Add support for Touchstone IDE on Mac

IDE Beta-0.5.0 - May 13, 2018

First Release
The TestScript Editor is an Eclipse-based desktop development environment. It provides a comprehensive suite of
development tools for creating, managing and publishing FHIR TestScript resources. It is designed to simplify test
script development and accommodate a large number of users, ranging from beginners to experts.

The TestScript Editor can be used to:

• Upload Test Groups and TestScript resources to Touchstone.

• Upload Test Groups to and download them from Simplifier.

• Manage TestScript resources by integrating with Version Control systems such as SVN, GIT etc.

You can learn more about the TestScript Editor at Touchstone Docs.

406 Chapter 13. Release Notes

http://build.fhir.org/testscript.html
/touchstone/userguide/html/testscript-authoring/testscript-editor.html#testscript-editor

	Introduction
	Registration and Login
	Register
	Membership
	New Organization
	Become a member
	Approving Membership

	Subscribe
	Login
	Email Addresses
	FAQ

	Test Systems
	Create Test System
	Capability Statement
	Test System List
	FAQ

	Executing Tests
	Creating Test Setup
	Repeated Variables

	Dynamic Fixtures
	Test Setup
	Conformance Testing

	Test Executions
	OAuth2 Test Executions
	Static Token
	Dynamic Token
	Authorization Code
	Client Credentials
	JWT Assertion

	Test Execution Results
	FAQ

	Multi-Profile Testing
	Validator Testing
	Uploading

	Updating Validators
	Viewing Validators
	To inspect the contents of a Validation Package

	Org Groups
	Creating Org Group
	Joining Org Group
	Leaving Org Group
	Access
	Test System access
	Test Definition access
	Test Results access

	Conformance Testing
	Conformance Suites
	Listing
	Launching Executions

	Current
	Single Test Group
	Multi Test Group

	Results Summary
	Publishing Results
	FAQ

	Client/Peer-to-Peer Testing
	Launching Executions
	Execution Matching
	Exchanges Screen
	Common Errors

	FAQ

	TestScript Authoring
	FHIR TestScript
	Upload on UI
	TestScript Editor
	Download
	Install a JVM
	Start TestScript Editor
	Create TestScript Project
	Create a Test Group
	Create a TestScript
	Code Completion
	Touchstone Integration
	Upload to Touchstone

	Simplifier Integration
	Simplifier Preferences
	Create New Project
	Download from Simplifier
	Upload to Simplifier

	Updating TestScript Editor
	References

	Best Practices
	Version Control
	Location
	Paths to resources

	Exclusions
	Props Location
	Props format
	Upload Exclusions
	Parsing Exclusions
	Validation Exclusions
	Conformance Exclusions

	Test Groups
	Access
	Deactivate
	Deletion

	Placeholders
	Predefined User Unique Data Values
	Functions for Dynamic Data Generation
	CURRENTDATE[TIME]
	DATE[TIME]
	UUID[-ST|-NODASH|-ST-NODASH]

	Usage

	Rule Authoring
	Rule Basics
	Definition
	Declaration
	Assertion
	Summary and Description
	Bindings

	Parameters
	Definition
	Supplying params
	Operator parameter
	Expected parameter

	Ruleset
	Definition
	Declaration
	Assertion
	Overriding rules

	Rules API
	Body
	Capability / Support
	Content-Type
	Header
	Minimum
	Path
	FHIRPath
	JSONPath
	NonFHIRPath
	XPath

	Profile
	Request Method
	Request URL
	Request URL Prefixes

	Resource
	Response Code

	Short-circuiting
	Failing
	Warning
	Skipping

	Multiple Assertions
	Short-circuiting when a request or response assertion fails
	Continuing rule-execution when a request or response assertion fails

	Rule Outputs
	Assertions on one Rule Output
	Assertions on multiple Rule Outputs
	Rule Output when outputting a Fixture

	XSLT and Schematron
	Declarations
	Header assertions
	Groovy
	XSLT
	Schematron

	Payload assertions
	Groovy
	XSLT
	Schematron

	OAuth2 Capabilities
	Fixture ID’s
	Base64Encoding
	PKCE Functionality

	Bulk Data Capabilities
	NDJSON File Evalutation and Validation
	NDJSON Assertion Prefix

	TestScript Extensions
	FAQ

	Conformance Suite Authoring
	Server Suites
	Client Suites
	Categorization
	Overview
	Definition
	Root Node
	Leaf Nodes
	Parent Nodes
	Node Deletion
	Paths
	FHIR
	CDS Hooks

	Resource Ownership
	Versioning
	Version Increments
	No Version Increments

	Best Practices
	Suite Versioning
	Anchor Systems
	Publishing
	Deletion

	FAQ

	Continuous Integration
	API
	Authentication
	Launching Executions
	Retrieve Execution status
	Retrieve Execution Detail
	Retrieve Script Exec Detail
	Pseudo code
	Retrieve FHIR Test Report
	OAuth2 Static Token
	OAuth2 Grant Flow

	Jenkins Integration Example
	Groovy Script Definition
	Authentication
	Execute Test
	Wait for Test Execution Completion

	Jenkins Job Configuration
	Post Steps Initial Configuration
	Execute system Groovy script
	Groovy script file
	Advanced - Expand Classpath
	Advanced - Enter Classpath

	Downloads
	Release Notes
	Touchstone
	TestScript Editor

